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Abstract

The default null hypothesis in typical statistical modelling soft-
ware is that a parameter’s value is equal to zero. However,
this may not always correspond to the actual conditions that
would hold if the effect of interest did not exist. In two case
studies based on recent research in cognitive science and lin-
guistics, we illustrate how data simulation can shed light on
unspoken, sometimes even incorrect, assumptions about what
the null hypothesis is. In particular, we consider information-
theoretic measures of how learners regularise linguistic vari-
ability, where the null condition is not always equal to zero
change, and an investigation of a cognitive bias for skewed
distributions based on the assumption that, without such a bias,
distributions would always remain uniform. All in all, simulat-
ing null conditions not only improves each researcher’s under-
standing of their own analysis and results, but also contributes
to the practice of “open theory”. Formalising one’s assump-
tions is, in itself, an important contribution to the scientific
community.
Keywords: computational modelling; null hypothesis; open
theory; random sampling; regularisation; information theory;
cognitive bias; skewed distribution

Introduction
The established modern scientific process has at its core the
practice of falsification (Popper, 1963), at least in the fre-
quentist framework of null hypothesis testing (Fisher, 1925;
Neyman & Pearson, 1928a, 1928b, 1933). In this framework,
researchers use statistical tests to indicate how likely their ob-
served data would be under the null hypothesis—that is to
say, under the assumption that the effect of interest does not
exist. If the data is sufficiently unlikely, then the null hypoth-
esis may be rejected. But is the null hypothesis that we reject
actually informative about our research question? Or put dif-
ferently: does the actual null hypothesis for a given analysis
align with what researchers assume it to be?

The null hypothesis is generally thought of as a claim of
“no effect” or “no difference”. But by simulating the out-
comes that would emerge under those conditions, researchers
may discover that the actual null hypothesis is quite differ-
ent from what is typically assumed by statistical modelling
software (e.g. that a parameter is equal to zero).

In this paper, we discuss two case studies based on recent
work on language and cognition. Using these case studies, we
illustrate how null hypotheses can be simulated and how this
process can add crucial nuance to the analysis workflow. We
intentionally draw these examples from different areas of en-
quiry to demonstrate the wide applicability of this approach
and to showcase different options for carrying out the simu-
lation procedure.

In the first case study, we consider the analysis of regular-
isation, a well-studied process whereby language users pro-
duce output that is less variable (on some dimension) than
their input (Hudson Kam & Newport, 2005, 2009; Reali &

Griffiths, 2009; Ferdinand et al., 2019; Smith & Wonnacott,
2010). The null hypothesis in regularisation experiments is
that participants are probability matching: producing variants
in proportion to their frequency in the input. We use simula-
tion to illustrate that, under common information-theoretical
measures of regularisation, probability matching does not al-
ways correspond to zero change between input and output
(Samara et al., 2017; Ferdinand et al., 2019; Smith & Won-
nacott, 2010; Keogh et al., 2024).

The second case study illustrates how a simple exemplar-
based “urn model” (Spike et al., 2017) can be used to rep-
resent and simulate people’s knowledge and use of linguistic
items. We use an urn model to simulate plausible null hy-
potheses of experiments conducted by Shufaniya and Arnon
(2022). Their research question is whether humans have a
cognitive bias in favour of skewed frequency distributions.
The experiments investigate whether uniform frequency dis-
tributions become skewed when reproduced by a single par-
ticipant, and whether this tendency is amplified across mul-
tiple “generations” in an iterated chain (Kirby et al., 2008,
2014). The implicit null hypothesis is that, if there is no cog-
nitive bias, frequency distributions should remain uniform.
Our simulation indicates that this assumed null hypothesis
does not hold and that the data presented by Shufaniya and
Arnon should not be taken to support a cognitive bias for
skew.

We now discuss each of these case studies in turn.

Case study 1: Change in information-theoretic
measures of regularisation

When people are exposed to data that exhibits probabilistic
or inconsistent variation and then asked to reproduce the data
themselves, their reproductions often “smooth out” the incon-
sistencies that appeared in their input. In the case of linguistic
variation, participants who learn a language where, for exam-
ple, nouns appear randomly with different determiners will
sometimes regularise the use of those determiners in their
own output—either by producing one form to the exclusion
of others (Hudson Kam & Newport, 2005, 2009; Schwab et
al., 2018), or by specialising different forms for different con-
texts (Smith & Wonnacott, 2010; Samara et al., 2017).

The effect of interest in these studies is when participants
produce certain forms with higher probability than predicted
by the input. Therefore, the null hypothesis (and, in fact, the
outcome that is often argued to be most common in adults) is
that participants are probability matching: that is, the prob-
ability of each determiner in their output mirrors the input
probabilities. There are several ways of comparing partic-
ipants’ output with the input to determine whether we can
reject the null hypothesis of probability matching; here, we



consider a widely-used approach in which probability distri-
butions over possible forms are used to compute information-
theoretic measures.

Quantifying regularisation
In recent work, regularisation has increasingly been quanti-
fied using two information-theoretic measures: Shannon en-
tropy and mutual information (Shannon, 1948; Samara et al.,
2017; Ferdinand et al., 2019; Smith & Wonnacott, 2010;
Keogh et al., 2024). Compared to a traditional frequency-
based analysis of regularisation (Hudson Kam & Newport,
2005, 2009; Austin et al., 2022) in which the dependent vari-
able is the change in the frequency of a certain form (usually
the form that was most frequent in the input), the information-
theoretic approach is sensitive to more subtle changes and
makes fewer assumptions about which forms are becoming
more frequent.

This approach takes as its basis a probability distribution
over the possible variants in the language (e.g. the probabil-
ity distribution over two possible determiners for a particular
noun). The variability in that distribution is reflected in its
Shannon entropy (H), the expected number of bits that would
be required to encode an event in that distribution. A uniform
probability distribution is highly unpredictable, hence highly
variable, and has high entropy; a skewed probability distribu-
tion is much more predictable and therefore less variable, and
has lower entropy.

The second measure, mutual information (I), captures the
extent to which variability in a language is conditioned by
some context. Languages that are highly variable overall, but
vary in a predictable way (e.g. certain determiners are only
ever used with certain nouns), have higher mutual informa-
tion.

Figure 1 shows the relationship between these two mea-
sures and different probability distributions for four example
languages that exhibit variation in determiner usage across a
small set of nouns.1

One way to identify regularisation behaviour is to com-
pare participants’ output to their input using these measures.
Specifically, a decrease in entropy corresponds to the situ-
ation where certain forms become more frequent at the ex-
pense of others. An increase in mutual information corre-
sponds to the situation where variation is maintained at a
global level but regularised in individual contexts.2 But what
can we take as evidence of a significant change in these mea-
sures? In standard statistical software, a parameter is con-
sidered “statistically significant” if an equal or more extreme
value is sufficiently unlikely to be observed, assuming that

1Two seemingly important cases are not illustrated: a language
with no variation at all (H = I = 0), and one where individual nouns
are completely consistent (H = I > 0). These turn out not to be in-
teresting cases for simulation under certain assumptions about prob-
ability matching, which we describe in the next section.

2The other possible changes—an increase in entropy and a
decrease in mutual information—do not reflect regularisation be-
haviour, so we do not discuss them here.
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Figure 1: Example probability distributions of determiners
over nouns, and their corresponding entropy (H) and mutual
information (I) values. With only two determiners, as here,
both measures have an upper bound of 1. Their lower bound
is always 0. More skewed distributions overall correspond to
lower entropy; lexical conditioning of variation (even proba-
bilistic conditioning) corresponds to higher mutual informa-
tion.

the parameter’s true value is zero. However, a number of re-
searchers have observed that zero change in entropy or mutual
information is, in fact, not the expected outcome under the
null hypothesis of probability matching (Samara et al., 2017;
Ferdinand et al., 2019; Smith & Wonnacott, 2010; Keogh et
al., 2024). Here, we describe in detail the simulation tech-
nique used by Keogh et al. and show how this approach can
be used to derive an appropriate null hypothesis based on the
properties of an arbitrary regularisation experiment.

Simulating a population of probability matchers
To determine the range of possible outcomes that can be en-
compassed by probability-matching behaviour, we simulate a
population of participants who produce each determiner with
probability proportional to its frequency in their input, taking
each of the languages in Figure 1 as a possible input. Impor-
tantly, since different nouns correspond to different frequency
distributions in some of these languages, this process requires
us to specify two assumptions about probability matching.

First, we must decide whether we think participants are
sampling from the probability distribution over determiners
on a noun-by-noun basis, that is, in a context-specific way,
or aggregating over the language as a whole. This deci-
sion has substantial implications for the possible outcomes
under the null hypothesis of probability matching. To illus-
trate this, consider the case of a participant trained on a de-



terministic grammar (unlike the ones in Figure 1) in which
Nouns 1 and 2 always appear with determiner A, and Nouns
3 and 4 always appear with determiner B. If such a partici-
pant produced each determiner with probability correspond-
ing to its overall frequency, we might not expect entropy to
change much: each determiner would appear roughly 50%
of the time in their output. However, we would expect mu-
tual information to decrease considerably, since each noun
would become more variable: on average, this strategy would
produce an output language resembling Grammar 1 (50/50
split between determiners for every noun). By contrast, if
the participant probability-matched on a noun-by-noun basis,
we would expect exactly zero change in both measures, since
random sampling with p = 1 (that is, deterministic produc-
tion of a single variant) cannot distort the input at all: each
noun would always be produced with the only determiner it
had been observed with in the input.

The second assumption about probability matching we
have to specify is whether we think participants encode the
exact frequencies of their input, or whether there is some
noise in this encoding. This is an important decision because,
again, if some form appeared with p = 1 in the input and we
use that exact value for random sampling, nothing will change
in the output. If we add some noise and instead sample with,
for example, p = 0.95, it would be possible for participants to
produce a noun–determiner pairing they had never seen (al-
though this would be rare).

Here, we simulate the case of context-specific probability
matching, and make the simplifying assumption that partic-
ipants encode the input frequencies exactly. Because regu-
larisation experiments primarily focus on how learners treat
unpredictable variation, and because perfect encoding of de-
terministic grammars will never lead to producing any vari-
ation at all, we simulate only input languages in which
noun–determiner mappings are probabilistic.

Our input languages only contain two forms, so we can
consider the generating process for the output data as sam-
pling from a binomial distribution. We arbitrarily assign de-
terminers to the two outcomes: A as ‘success’, and B as ‘fail-
ure’. We use the rbinom() function in R (R Core Team,
2024) to generate data from 30 participants who each produce
eight observations per noun (these numbers match the quan-
tities in our experiment in Keogh et al., 2024; they should
reflect the quantities in the experiment to be analysed.) The
probability of ‘success’ on each trial is given by the frequency
of determiner A with that noun in the input. For example, for
all nouns in Grammar 1, p = 0.5; in Grammar 2, p = 0.9 for
Nouns 1–3 and p = 0.1 for Noun 4. We then calculate the
entropy and mutual information of each participant’s output
language and compare it to the entropy and mutual informa-
tion of their input. We take the mean change in each measure,
aggregated over participants, as the overall outcome of that
experiment. We repeat this process 10,000 times to generate
a distribution of expected experiment means for each measure
under the null hypothesis of probability matching.

Results and analysis
Figure 2 shows the expected change in entropy (left) and mu-
tual information (right) for each of the languages described in
Figure 1 when all participants are probability matching. It is
clear that entropy is far more likely to go down than up, while
on average, mutual information always increases.
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Figure 2: Expected change in entropy (left) and mutual infor-
mation (right) between input (the four languages described in
Figure 1) and output under the null hypothesis of probability
matching. In almost all cases, probability matching gives rise
to a non-zero change in one or both measures, a result that
would be taken as evidence of regularisation by most stan-
dard statistical modelling software.

There are cases (Grammars 2 and 4) where zero entropy
change is within the highest-density 95% interval of the null
distribution; in these cases, the default null hypothesis as-
sumed by standard statistical software would be a reasonable
one. However, this is not always the case: in Grammar 1 par-
ticularly, zero is clearly well above the upper tail of the null
distribution, meaning that we should always expect entropy
to decrease given this kind of input.

One important factor contributing to this observation is that
entropy and mutual information are bounded: with two vari-
ants, as we use here, the maximum value for both measures is
1. The minimum, regardless of the number of variants, is al-
ways 0. Since Grammars 1 and 3 have H = 1 in the input, en-
tropy can therefore never increase. The same constraint holds
in the other direction: for example, since I = 0 for Grammars
1 and 4, a participant could never produce output with lower
mutual information than their input. In other words, if either
measure is at its minimum or maximum value in the input
language, then the measure can only change in one direc-
tion. A similar observation was made by Smith and Wonna-
cott (2010), who pointed out that participants trained on a lan-



guage exhibiting maximal entropy will always reduce entropy
if they deviate at all from their input, which will necessarily
correspond to a “significant” result in a standard linear model.
This observation is also important because a 95% confidence
interval around the mean change will, by nature, not cross
zero. It is therefore erroneous, given maximum or minimum
input measures, to observe that the 95% confidence interval
of the mean change does not cross zero and therefore reject
the null hypothesis that participants are probability-matching.
If participants probability-match under the assumptions given
here, we would in fact expect that the 95% confidence interval
does not cross zero.

In sum, these simulations have shown that, when convert-
ing probabilities to information-theoretic measures, it is usu-
ally reasonable to assume that these measures will show non-
zero change between participants’ input data and the output
they produce, even when participants are probability match-
ing (the process which is typically understood as the absence
of a regularisation effect). The exact specification of the
null hypothesis depends both on the assumptions researchers
make about how probabilities are encoded in learning, and on
the properties of the input.

Case study 2: An urn model with no cognitive
bias for skewed distributions

Iterated learning experiments (Griffiths & Kalish, 2007;
Kirby et al., 2008; Reali & Griffiths, 2009; Kirby et al., 2014)
can help shed light on the cognitive biases that give rise to
language universals. One of the most striking commonalities
between languages is that word frequencies follow a skewed,
power-law distribution (Zipf, 1932, 1949), such that a word’s
frequency is inversely proportional to its rank. Using a se-
ries of iterated storytelling experiments, Shufaniya and Arnon
(2022) argue that this feature of language arises from a cogni-
tive bias in favour of skewed distributions, a preference which
is amplified over the course of iterated learning.

In these experiments, participants are told a story that con-
tains six novel words integrated into an English text. In the
first participant’s input, all novel words have the same (i.e.
uniform) frequency. The participant must then re-tell this
story, and that version of the story is shown to another partici-
pant. This process is repeated several times, with each partic-
ipant’s output serving as the input to the next participant, to
create a transmission chain of 10 “generations”. The authors
count how often each participant uses each word and compute
the Shannon entropy of the resulting distribution. They find
that entropy decreases “significantly” over generations, indi-
cating that the frequency distributions became increasingly
skewed across transmission. The implied null hypothesis is
that, if there is no cognitive bias for skew, the frequency dis-
tributions should remain uniform and thus entropy should not
decrease.

Here, we replicate Studies 2 and 3 from Shufaniya and
Arnon (2022) using a simple cognitive model. Crucially, the
agents in our model have no cognitive bias for skew: they

produce words by randomly sampling from their memory of
their input. The original studies manipulate whether or not
participants are required to use all six novel words in their
retelling (the two conditions in Study 2), and whether those
novel words must be recalled from memory (Study 2) or are
provided during the story’s re-telling (Study 3). We chose a
model architecture that allows us to simulate all of these con-
ditions.

Simulation using an urn model

Traditionally, an urn model is a representation of an agent as
a collection of meaning–signal mappings (Spike et al., 2017;
Keogh et al., 2024). Each meaning category has an urn, and
every time a signal is received with that meaning, a token of
the given signal is added to that urn. A token may be “forgot-
ten”, in which case it is removed from the urn. To produce
a signal, a token is sampled at random from all tokens in the
given urn.

What makes an urn model an appropriate choice to sim-
ulate the data from Shufaniya and Arnon (2022)? It is a
very simple model that still incorporates all the capacities that
the original experiments manipulate. Firstly, it is exemplar-
based, so it easily allows us to find the frequency distributions
of the exemplars it has stored. Secondly, it learns from input,
and it produces output stochastically. And finally, it can have
memory limitations.

In our simulation, since the novel words have no associated
meanings, we simply place them all into a single urn that rep-
resents the category “novel word”. In Generation 1, an agent
receives as input all six novel words, each appearing eight
times, like in the original experiment. The agent then pro-
duces 48 tokens by repeatedly sampling a single token from
the urn of exemplars they have stored. This amounts to ran-
dom sampling proportional to a token’s frequency in memory.
The 48 tokens an agent produces serve as input to a new agent
in Generation 2, and so on, until Generation 10.

For the simulations in which type reduction is not permit-
ted, we began each agent’s output with one token of each of
the six types, and then for the remaining 42, sampled tokens
randomly from the urn as usual. For the simulations corre-
sponding to the experiment in which participants must recall
the novel words from memory (Study 2), we set the agents’
memory limit at 24 tokens: less than the number of tokens
they receive as input. By limiting agents’ memory in this
way, we incorporate Shufaniya and Arnon’s observation that
participants sometimes failed to remember the original words
they received. Every time an agent who has already stored 24
exemplars receives a new token as input, they “forget” an old
one so that the new one can be stored, effectively overwriting
their previous memory. In our model, it is a random token
that is overwritten each time.

This model formalises the null hypothesis of a stochastic
outcome with no explicit cognitive bias in favour of skewed
distributions. Each agent produces tokens randomly, propor-
tional to their frequency in memory. We simulated 1,000
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Figure 3: Example frequency distributions from a single simulated transmission chain from each of the three simulated datasets.
Regardless of type reduction and memory limit, distributions become increasingly skewed through transmission.

chains of 10 generations each for each combination of vari-
ables tested by Shufaniya and Arnon’s Studies 2 and 3.

Results and analysis
Example frequency distributions over the six novel words are
illustrated in Figure 3. As in the original paper, we com-
puted the entropy of the resulting frequency distributions at
each generation for each chain. Figure 4 shows that entropy
decreases across generations in all three simulated datasets.
Qualitatively, these results closely resemble the plots shown
in Shufaniya and Arnon (2022).

We analysed the simulated data by applying the same anal-
yses as the original paper: one linear mixed effects model fit
to the data in each panel of Figure 4. Each model predicts
entropy as a function of generation (centered), with random
intercepts by chain and random slopes over centered gener-
ation by chain (Shufaniya & Arnon, 2022, 66). The models
were fit in R (R Core Team, 2024) using the lme4 package
(Bates, Mächler, Bolker, & Walker, 2015).

The parameter of interest is the slope coefficient, which
estimates how much entropy changes with an increase of one
generation. Table 1 shows the original coefficient estimates
and standard errors for this parameter reported in Shufaniya
and Arnon (2022), along with the ones from our simulated
data. The coefficient estimates are strikingly similar, nearly
identical.3

The claim in Shufaniya and Arnon (2022) is that the null
hypothesis can be rejected: entropy decreases significantly
across generations, which is a sufficiently unlikely outcome

3The smaller standard errors produced by our models are be-
cause, where Shufaniya and Arnon analysed data from five chains,
we generated data from one thousand.

under the assumed null hypothesis that frequency distribu-
tions will remain uniform, and that entropy will not change.
But our simulations have shown that this null hypothesis is
not accurate. If we follow the common understanding that
the null hypothesis represents random chance, we would in
fact expect the frequency distributions over six novel words to
become increasingly skewed over time. Admittedly, it is not
likely that participants in Shufaniya and Arnon’s storytelling
task are randomly sampling from a distribution of tokens. It
is more likely that there are other pressures contributing to
an increase in skew, such as certain objects showing up fre-
quently due to the typical properties of narratives (i.e. stories
are about something, and that something is probably more
frequent than other, more peripheral, things). Nonetheless,
this simulation has shown that it is premature to conclude
that there is a cognitive bias in favour of skewed distributions
without further experimental work and an analysis that takes
the tendency we observe here into account.

Discussion and conclusion
With these two case studies, we have illustrated that assum-
ing a null hypothesis of zero change can lead to inaccurate
conclusions. Specifically, in regularisation experiments, the
null hypothesis of probability matching does not necessarily
correspond to zero change in the dependent variable between
input and output (Samara et al., 2017; Ferdinand et al., 2019;
Smith & Wonnacott, 2010; Keogh et al., 2024). Rather, the
expected outcome of such a strategy depends both on one’s
assumptions about probability matching and on the proper-
ties of the input. And in an iterated storytelling experiment
(Shufaniya & Arnon, 2022), the implicit null hypothesis that
frequency distributions should retain the form they started
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Figure 4: The Shannon entropy of the frequency distribution produced by each simulated chain (N = 1000) at every generation.
Entropy decreases most dramatically when type reduction is permitted, but even when it is not, decreases are observed.

Shufaniya and Arnon (2022) Urn model
Study 2 (permit type reduction, memory limit) β = –0.11 SE = 0.013 β = –0.11 SE = 0.002
Study 2 (no type reduction, memory limit) β = –0.02 SE = 0.01 β = –0.03 SE = 0.001
Study 3 (no type reduction, no memory limit) β = –0.02 SE = 0.01 β = –0.02 SE = 0.0005

Table 1: Slope coefficient estimates (β) and standard errors (SE) from linear mixed effects models estimating how the Shannon
entropy of a frequency distribution changes when increasing the generation by one. The urn model, sampling randomly, shows
the same effects observed in the original experiments.

with is not accurate; random sampling alone gives rise to in-
creasingly skewed distributions through transmission.

Simulating null hypotheses leads in several ways to more
robust statistical practice. In both the case studies we present
here, the results of our simulations would make us more con-
servative about viewing an outcome as extreme enough to re-
ject the null hypothesis. In this way, we can be even more vig-
ilant about avoiding p-hacking (Head et al., 2015), and we re-
duce the risk of incorrectly rejecting—or incorrectly failing to
reject—an unsuitable null hypothesis. Of course, there may
be cases where the default null hypothesis of zero (change in
some measure, or difference between groups) turns out to be
appropriate. Even in such cases, we would argue that the sim-
ulation process is a valuable one to give researchers greater
confidence in their analysis.

Readers will note that we stop short of proposing a single
alternative analysis technique that can be adopted whenever
a more traditional method may make the wrong assumptions.
This is because the simulation approach we advocate can be
applied so widely that there is no one-size-fits-all analysis to
suit every experiment and every null hypothesis. Rather, we
would argue that every researcher is the best person to iden-
tify an appropriate solution for their specific context.

Nonetheless, our general approach aligns with the growing
call for the practice of “open theory” (Guest & Martin, 2021;
Lakens & DeBruine, 2021). Simulating null hypotheses is
one example of how researchers can “explicitly document ...
what their theory assumes” (Guest & Martin, 2021, 2). Not

only does this help researchers to better understand their own
practice, it also enables the wider research community to in-
terpret findings in light of the researcher’s assumptions.

In conclusion, simulating null hypotheses allows re-
searchers to develop a deeper understanding of their research
question and analysis, and ultimately to better understand and
more accurately interpret the results of their research.
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