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Redundancy is ubiquitous in the world’s languages, but its functions are not yet well understood.
Here, we propose that redundancy might contribute to the robustness of language to facilitate its
learning by users with diverse cognitive traits. We use an artificial language learning experiment
to identify individual differences in learning of noun classes from redundant linguistic cues. All
logically possible behaviors are represented in our data: some participants prefer Cue A, some
prefer Cue B, and some form a more holistic representation of Cue A+B. Despite this diversity,
the population as a whole was above-chance when generalizing to novel stimuli, suggesting
that redundancy helps people converge on similar surface structures, even if their underlying
representations differ.

1. Introduction

All languages have a substantial degree of redundancy: the same information is
encoded in multiple parts of the signal. For example, morphosyntactic elements
such as agreement systems often involve marking words for features (e.g. per-
son, gender, number or case) that are predictable from other cues (Haig & Forker,
2018). The pervasiveness of redundancy in language is a puzzle, especially in the
face of evidence that producers prefer to minimize redundancy by omitting or re-
ducing more predictable elements (e.g. Gibson et al., 2019; Jaeger, 2010; Aylett &
Turk, 2004). One proposed explanation is that redundancy is a design feature that
improves language learning, especially for young children (Tal & Arnon, 2022;
Lupyan & Dale, 2010; Gerken et al., 2005; Morgan et al., 1987; Portelance et al.,
2023) or the real-time processing of language (Christiansen & Chater, 2016). An-
other (non-mutually exclusive) possibility is that redundancy contributes to the
robustness of language in the face of having to be acquired by diverse learners
(Monaghan, 2017; Winter, 2014; Whitacre, 2010). Although there are cultural
selection pressures against language structures that are not learnable by a large
proportion of the population (Kirby et al., 2015), language systems may not be
able to be optimized to be equally learnable by all members of a community,
given the diversity in people’s cognitive traits. Redundancy may be one way to
increase the likelihood that a language will be learned equally well by everyone:
even if some people fail to learn certain cues, they should still be able to learn the



linguistic system overall.
Here, we offer an exploratory analysis of individual differences in learning of

a redundant system. We present an experiment in which participants are trained
on an artificial language with noun classes marked by redundant linguistic cues: a
suffix on the noun, and a separate class marker. We then test how well they have
learned these cues by asking them to generalize to novel meanings. Naturally,
we expect to see variability in how well people learn the training set. However,
our key interest is whether there is also variability in generalization, even among
participants who appear to be performing similarly in training. A range of behav-
iors are logically possible: participants could learn the training set by rote without
identifying any underlying rules or structure, they could learn both cues to class
membership equally well, or they could learn the two cues to differing extents.
We consider participants’ training profiles and cognitive dispositions to try and
predict who is more likely to exhibit these different behaviors.

2. Method

Participants We recruited 100 adults via Prolific. All resided in the US and
were self-reported native English speakers with no known language disorders.
Participants were paid $7.30 for around 45 minutes’ participation.

Materials Stimuli were drawings from the MultiPic databank (Duñabeitia et al.,
2018). We selected eight basic-level categories from four semantic domains: hu-
mans, animals, food, and clothing. The lexicon consisted of 32 pseudoword roots,
four suffixes and four class markers taken from Culbertson et al. (2017). A full
phrase consisted of a pre-nominal class marker followed by root + suffix e.g. gae
skun-po. Phrases were displayed both auditorily and orthographically.

Procedure The experiment was written in JavaScript using the jsPsych library
(de Leeuw, 2015) and administered through participants’ web browser. First, par-
ticipants were trained on a subset of the artificial language: four randomly selected
meanings from each class. On each trial, participants heard a phrase and attempted
to select its meaning from a 2x2 array of images: two from the target class, and
two from another randomly selected class. They received full feedback on their se-
lection. Participants completed 8 blocks of training, with each of the 16 meanings
appearing as the target on one trial per block (128 trials total). Next, participants
completed a reading span task to provide a measure of verbal working memory
(Daneman & Carpenter, 1980; Friedman & Miyake, 2005), and a questionnaire as-
sessing approach and avoidant behavioral tendencies (the BIS/BAS measurement
tool: Carver & White, 1994). Both of these variables have been found to corre-
late with generalization performance in other domains (e.g. Dale et al., 2021).
Participants were then tested on their knowledge of the language’s structure using
the held-out meanings. On each trial, participants heard an unfamiliar phrase and



attempted to select its meaning from a 2x2 array of images: the target, and one
randomly selected meaning from each of the other classes. There were three trial
types in this phase. On REDUNDANT trials participants saw complete phrases as
in training; on CLASSIFIER-ONLY and NOUN-ONLY trials they saw only one cue
(the missing word was blanked out). They received no feedback on their selec-
tions. Finally, participants completed a questionnaire assessing explicit awareness
of the noun classes and other language learning experience.

3. Results

Training Overall, participants showed clear evidence of learning over the course
of training, with accuracy increasing considerably from the first block (M = 0.43,
SD = 0.49) to the final block (M = 0.84, SD = 0.37). However, there are notice-
able differences between participants. Visual inspection of by-participant loess
curves reveals that there are at least three qualitatively different training profiles
(Fig. 1A): linear (accuracy continues to increase throughout the training phase),
logistic (accuracy increases from the start of training but ultimately reaches an
asymptote) and non-monotonic (accuracy varies across the training phase). Con-
trolling for explicit awareness of the semantic categories, higher performance in
the final training block was predicted by higher performance in the first block (β
= 0.041, SE = 0.015, t = 2.72, p < 0.01), higher working memory capacity (β
= 0.036, SE = 0.016, t = 2.27, p < 0.05) and greater experience with language-
learning apps like Duolingo (β = 0.032, SE = 0.015, t = 2.14, p < 0.05).
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Figure 1. A: Example training profiles from three characteristic participants. B: Accuracy on test
trials by cue. Individual coloured points represent by-participant mean performance for that cue. Black
points and error bars represent the mean and bootstrapped 95% confidence interval over participants.
The dashed line indicates chance performance of 0.25.



Generalization Because participants had not previously been exposed to the spe-
cific meanings presented at test, they could not rely on knowledge of the roots to
determine the meaning of the phrases. Rather, the only way they could succeed
at this task was if they had learned the relationship between the classifier and/or
suffix and the semantic class. A larger drop in accuracy between the final train-
ing block and the test phase indicates that a person is less good at learning that
relationship. Importantly, someone can be very good at memorizing the specific
phrase-item pairings presented in training (high training accuracy) and yet fail to
generalize, resulting in low accuracy on the test trials.

Overall, performance was above chance for all trial types, indicating that at
the population-level, there is generalization of class cues (Fig. 1B). Accuracy
was highest for REDUNDANT trials (M = 0.72, SD = 0.45), closely followed by
CLASSIFIER-ONLY trials (M = 0.68, SD = 0.47). NOUN-ONLY trials had consider-
ably lower accuracy (M = 0.45, SD = 0.50). Unsurprisingly, accuracy on the final
training block predicted overall test performance (t = 3.47, p < 0.001). Surpris-
ingly, this relationship (r = 0.11) all but disappeared when we include measures of
working memory (β = 0.075, SE = 0.021, t = 3.530, p < 0.001), risk aversion (β
= 0.043, SE = 0.019, t = 2.31, p < 0.05) and explicit awareness of the association
between word forms and semantic categories (β = 0.099, SE = 0.040, t = 2.45, p <
0.05). These three covariates all independently predicted test performance while
controlling for final training block accuracy (β = 0.036, SE = 0.031, t = 1.796, p
= 0.076), together accounting for 32% of the variance. Thus, better learners were
not necessarily better generalizers.

Unsurprisingly, there was a clear drop-off in accuracy from the final train-
ing block to test (averaging across trial types: M = -0.22, SD = 0.23). A larger
drop (controlling for training performance) is consistent with people being more
focused on memorizing the specific items than on learning the underlying rules.
Looking just at REDUNDANT test trials (the most like-for-like comparison), higher
working memory capacity was associated with a smaller drop-off (β = -0.11, SE
= 0.025, t = -4.23, p < 0.001). Higher reward responsiveness was associated with
a slightly larger drop-off (β = 0.051, SE = 0.023, t = 2.21, p < 0.05), potentially
due to the lack of feedback during testing (positive feedback may be viewed as a
kind of reward).

Almost no one had uniform performance on the three test trial types, sug-
gesting that the vast majority of participants had a preferred cue. We calculated
two indices for every participant to compare their average performance on RE-
DUNDANT trials to each of the individual cues. A larger positive score for the
comparison between Cue A and REDUNDANT trials indicates that a participant is
relying more on Cue B, since their performance is more greatly impaired by the
removal of that cue. A variety of behaviors are represented in our data (Fig. 2),
but participants clearly tend to rely more on the classifier than the suffix. Only
21 participants performed equally well or better on NOUN-ONLY trials relative



to REDUNDANT trials, compared to 55 who performed equally well or better on
CLASSIFIER-ONLY trials. Many (32) participants had positive scores on both in-
dices, indicating that they were specifically benefiting from the redundancy i.e.
had learned the association between classifier+suffix and semantic category in a
more holistic way such that their performance declined when either cue was miss-
ing. Controlling for raw performance on REDUNDANT trials, higher performance
in the final training block was associated with an increased benefit of redundancy
(β = 0.047, SE = 0.011, t = 2.96, p < 0.01), while higher performance in the first
half of the training phase (i.e. faster learning) was associated with a reduced ben-
efit of redundancy (β = -0.043, SE = 0.012, t = -3.15, p < 0.001). In fact, faster
learners actually performed worse when presented with redundant cues compared
to their preferred cue in isolation. Greater risk aversion was also associated with
a lower redundancy advantage (β = -0.028, SE = 0.010, t = -2.88, p < 0.01).

Figure 2. Performance on REDUNDANT trials relative to individual cues. Individual points represent
by-participant scores; larger points represent more participants with equivalent values. Positive scores
indicate a facilitatory effect of redundancy; negative scores indicate a detrimental effect of redundancy.
Points along the dashed lines indicate that performance is equally good on REDUNDANT trials as on
the given individual cue. Insets show the learning curves for the highlighted participants.

4. Discussion

In this study, we investigated whether morphosyntactic redundancy could con-
tribute to the robustness of language by providing greater assurance that a system
will be acquired despite variability in learning mechanisms across a population.
When trained on an artificial language with two linguistic cues to noun class mem-
bership, we found clear individual differences in cue preference. Although the



majority of our participants relied more heavily on the separate class-marker, a
sizeable minority were attending more to the suffix on the noun. Around a third
of our participants showed evidence of integrating the two cues more closely, per-
forming best when both cues were available. This redundancy benefit was great-
est for participants who achieved the highest level of accuracy by the end of the
training phase, and lowest for participants who reached a higher level of accuracy
earlier on in training.

The lack of a redundancy advantage for faster learners suggests that early
commitment to one cue that reliably predicts category membership may block
discovery of additional generalizations that might be beneficial down the line (in
classical conditioning terms, overshadowing: Pavlov, 1927). Learners who ex-
plore the data for longer may be better able to integrate the redundant cues, and
use these extra sources of information to their advantage both in learning and in
generalization (Liquin & Gopnik, 2022; Sumner et al., 2019). Higher risk aver-
sion also appears to reduce the strength of this overshadowing effect, resulting in
more even performance across the three trial types, and therefore a lower benefit
of redundancy per se. It is important to note that this is not a straightforward con-
sequence of these participants expending greater effort: a person could be trying
very hard during training, yet fail to learn the structure in a way that enables them
to generalize training data effectively.

Contrary to some previous work in the ‘Less-is-More’ tradition (e.g.
Goldowsky & Newport, 1993; Kareev, 1995; Pitts Cochran et al., 1999), we also
found a positive relationship between working memory capacity and generaliza-
tion. This finding dovetails with more recent work arguing that enhanced cogni-
tive capacity is associated with better L1 and L2 learning outcomes (e.g. Brooks
& Kempe, 2019; Rohde & Plaut, 2003), as well as studies linking higher working
memory capacity to better category learning (e.g. Craig & Lewandowsky, 2012).

Our study also offers preliminary evidence of robustness effects in morphosyn-
tax. Future work can implement different training conditions to see whether, at a
population-level, there is better generalization of a language with redundant cues
than one with a single cue – even if that single cue is well-learned by the majority
of participants, like the classifier in our experiment. Manipulating the reliability
of the redundant cues (Monaghan et al., 2017) may also force people to attend to
both cues, reducing individual differences in cue preference. In fact, it is possible
that even those participants who seemed to benefit from redundancy did not in-
terpret the cues as redundant per se: since both were always available in training,
they could have been interpreted as a single discontinuous cue.

Overall, this study adds to a growing body of evidence suggesting that, despite
its potential costs in production, redundancy may be functional for language learn-
ing. Specifically, we suggest that when multiple cues to a language’s grammatical
structure are available, learners who favour different cues should nonetheless be
able to acquire that underlying structure equally well.
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