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Abstract

General principles of human cognition can help to explain why languages are more likely to have
certain characteristics than others: structures that are difficult to process or produce will tend to be lost
over time. One aspect of cognition that is implicated in language use is working memory—the compo-
nent of short-term memory used for temporary storage and manipulation of information. In this study,
we consider the relationship between working memory and regularization of linguistic variation. Regu-
larization is a well-documented process whereby languages become less variable (on some dimension)
over time. This process has been argued to be driven by the behavior of individual language users, but
the specific mechanism is not agreed upon. Here, we use an artificial language learning experiment to
investigate whether limitations in working memory during either language learning or language pro-
duction drive regularization behavior. We find that taxing working memory during production results in
the loss of all types of variation, but the process by which random variation becomes more predictable
is better explained by learning biases. A computational model offers a potential explanation for the
production effect using a simple self-priming mechanism.
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1. Introduction

Language is created in real time: successful processing requires us to rapidly turn com-
plex input into the correct mental representations, while successful production requires us to
rapidly turn our mental representations into meaningful output. However, the finite nature of
human memory imposes a bottleneck on these processes, shaping the kinds of structures that
can persist as languages evolve (Christiansen & Chater, 2016, 2008; Futrell, Mahowald, &
Gibson, 2015; Kirby, 1999; MacDonald, 2013). It has long been acknowledged that working
memory—the component of short-term memory used for temporary storage and manipulation
of information (including linguistic information)—is severely limited in its capacity (Badde-
ley & Hitch, 1974; Baddeley, 2000; Cowan, 2001; Gobet & Clarkson, 2004; Miller, 1956).
Cognitive constraints such as these can help to explain why languages look the way they do:
as languages are passed from person to person, properties that make them easier to process or
produce are likely to edge out those that place a more significant burden on working memory.
Thus, some processes of language change might arise as a result of an interaction between
linguistic representations and constraints on memory and other general principles of human
cognition (Culbertson & Kirby, 2016).

In this study, we consider the role of working memory limitations in the regularization of
linguistic variation. Regularization is a well-documented process of language change whereby
a language becomes less variable (on some dimension) over generations. This process has
been argued to be driven by individual language learners and users, who produce output that
is less variable than their input (Hudson Kam & Newport, 2009). Repeated across many indi-
viduals and generations, this behavior is one way in which emerging languages may acquire
systematic rules and regularities (Smith & Wonnacott, 2010). For example, nouns in English
generally mark plurality with the regular -(e)s suffix (e.g., dog→ dogs), but even among irreg-
ular nouns there are identifiable, semi-productive patterns (e.g., the vowel change in mouse
→ mice and louse → lice, or null marking in fish and sheep). Furthermore, while there is
considerable variation in the English plural system overall, the choice of form for any given
word is generally phonologically or lexically conditioned. By contrast, random variation—
where there are no conditioning factors—is rare in natural languages (Givón, 1985), at least
in the output of native speakers (Johnson, Shenkman, Newport, & Medin, 1996). Thus, while
variation is ubiquitous, it tends to be predictable in some way.

1.1. Regularization of unpredictable variation

There is a wealth of evidence that language users reduce unpredictable variation, both
in the lab and in natural language. Children exposed to unpredictable variation in artificial
language learning studies tend to regularize at a system-wide level, increasing their use of
one variant (usually the form they encountered most frequently in the input) to the exclusion
of others (Hudson Kam & Newport, 2005, 2009; Schwab, Lew-Williams, & Goldberg, 2018).
This behavior persists even when the most frequent form in the input is not actually very
frequent at all (Austin, Schuler, Furlong, & Newport, 2022). Regularization behavior can
also be observed in adults, although potentially to a lesser degree or in a narrower range
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of circumstances than in children (Culbertson & Newport, 2015; Hudson Kam & Newport,
2009). For example, adults regularize more when the number of alternating variants increases
(Ferdinand, Kirby, & Smith, 2019; Hudson Kam & Newport, 2009; Saldana, Smith, Kirby,
& Culbertson, 2021), when generalizing to novel contexts (Wonnacott & Newport, 2005),
and when attempting to coordinate with other individuals in communicative tasks (Fehér,
Ritt, & Smith, 2019; Fehér, Wonnacott, & Smith, 2016; Kamps, Ferdinand, & Kirby, 2014;
Perfors, 2016). Furthermore, even when adults maintain variation, they often still regularize
at a lower level, making variation more predictable by conditioning it on some aspect of
the context like lexical item or grammatical category (Samara, Smith, Brown, & Wonnacott,
2017; Smith & Wonnacott, 2010). And although individual adults may show weaker evidence
of regularization than children, this effect may nevertheless be amplified through cultural
transmission as small increases in regularity accumulate over generations (Reali & Griffiths,
2009; Smith & Wonnacott, 2010; Smith et al., 2017).

In natural language, regularization of unpredictable variation has been observed in deaf
children exposed to inconsistent linguistic input, both in the acquisition of existing signed
languages from non-native users (Singleton & Newport, 2004) and in the formation of new
signed languages (Senghas, Coppola, Newport, & Supalla, 1997; Senghas & Coppola, 2001).
Regularization has also been argued to be at play in the emergence of stable creole languages
from highly variable pidgin languages (Aitchison, 1996; Bickerton, 1981; DeGraff, 1999;
Siegel, 2007).

1.2. Regularization of predictable variation?

It is less clear whether the cognitive mechanisms driving regularization act as strongly
on predictable patterns of variation. In natural language, while there are certainly cases of
irregular forms (e.g., cow→ kine in Middle English) shifting to the regular pattern, there is
some evidence that irregularization is roughly as prevalent a process as regularization, and
that the main driver of increased regularity is the introduction of new lexical items (which
tend to be regular) rather than the regularization of existing items (Cuskley et al., 2014). Fur-
thermore, regularization is highly frequency-dependent: high-frequency forms tend to exhibit
stable irregularity, while lower frequency forms are more likely to regularize (Carroll, Svare,
& Salmons, 2013; Cuskley et al., 2017; Lieberman, Michel, Jackson, Tang, & Nowak, 2007;
Smith, Ashton, & Sims-Williams, 2023).

Artificial language learning experiments testing the acquisition of conditioned variation
also provide somewhat mixed evidence. Although this kind of variation is clearly far more
typical of natural language than the unpredictable variation usually targeted by regularization
experiments, it is not always learned or reproduced more accurately. When these patterns of
variation are only probabilistic, children can struggle, whether conditioning is by linguistic
features like syntactic role (Hudson Kam, 2015) or by salient semantic features like nat-
ural gender (Schwab et al., 2018). However, children are sensitive to certain conditioning
cues (especially phonological: Culbertson, Jarvinen, Haggarty, & Smith, 2019; Karmiloff-
Smith, 1981; Pérez-Pereira, 1991; Gagliardi & Lidz, 2014) and seem to regularize less (or
not at all) when conditioning is deterministic (Austin et al., 2022; Brown, Smith, Samara, &
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Wonnacott, 2022; Samara et al., 2017; Wonnacott, 2011). Adults generally have less diffi-
culty acquiring conditioned variation—either probabilistic (Schwab et al., 2018) or determin-
istic (Austin et al., 2022; Hudson Kam & Newport, 2009)—and often maintain this kind of
variation across multiple simulated generations in iterated learning experiments (Smith et al.,
2017, Smith et al., 2023; Smith & Wonnacott, 2010). However, as with children, adults’ per-
formance varies according to the presence or salience of conditioning cues: neither age group
appears to readily acquire arbitrary subclass distinctions (Braine et al., 1990; Culbertson &
Wilson, 2013; Frigo & McDonald, 1998; Smith, 1969).

Overall then, there seems to be good reason to suspect that at least certain kinds of condi-
tioned variation will also be regularized—although seemingly to a lesser extent than unpre-
dictable variation.

1.3. What causes regularization?

Whether regularization should target all kinds of variation—or only unpredictable
variation—might depend on the underlying cause of the behavior. However, the specific
mechanism driving regularization is not agreed upon.

One possibility is that regularization arises from a failure to encode variation during learn-
ing (Culbertson, Smolensky, & Wilson, 2013; Hudson Kam & Newport, 2009). In other
words, when individuals produce a more regular language than the one they were exposed
to, they may be faithfully producing what they remember of their input. On this account,
age differences in regularization behavior might be explained by developmental changes in
general learning mechanisms; perhaps, by not acquiring the full complexity of their input,
children are better able than adults to extract regularities from noise (Hudson Kam & New-
port, 2009; Rische & Komarova, 2016). However, tasks that provide a more direct window
on individuals’ internal representations (e.g., grammaticality judgments or frequency reports)
provide evidence that even those who exhibit the most extreme regularization behavior still
show awareness of the inconsistencies in their input, including for very complex patterns
(Austin et al., 2022; Ferdinand et al., 2019; Hudson Kam & Chang, 2009; Hudson Kam &
Newport, 2009; Schwab et al., 2018; Saldana et al., 2021). Furthermore, Perfors (2012) found
that requiring participants to attend to a secondary task while they learn an artificial language
impaired vocabulary acquisition, but had no effect on the strength of regularization behavior,
suggesting that regularization is not an inevitable consequence of imperfect learning.

This suggests that regularization may be primarily a production-side process. However, this
still leaves open several possible mechanisms. For example, regularization in production may
be driven by specific pragmatic contexts. In line with this, adults seem to regularize more
when they understand that the variation in their input is genuinely random (Perfors, 2016),
suggesting that when they maintain variation, it is because they think it is meaningful (Clark,
1988). Regularization behavior is also stronger during communicative tasks, either due to
accommodation between interlocutors or because individuals strategically remove aspects of
the linguistic signal that do not correlate with differences in meaning to maximize commu-
nicative success. (Fehér et al., 2016; Fehér et al., 2019). The pragmatic account straightfor-
wardly predicts that unpredictable variation will be regularized, but it is not clear that these
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mechanisms would also target predictable variation. Conditioned variation already satisfies
language users’ expectation that variation in language should be rule-governed (Wonnacott &
Newport, 2005), so getting rid of it would not obviously increase communicative success; in
fact, failing to observe the rules of the language in this way might even hinder communica-
tion. Accommodation between interlocutors too would presumably favor the lexically specific
rules that both had acquired.

Alternatively, there may be purely cognitive factors that drive regularization in production,
such as working memory limitations. One hypothesis which has received some experimen-
tal support is that regularization arises from limitations on memory retrieval during language
production (Hudson Kam, 2019; Hudson Kam and Chang, 2009). The exact mechanism is
unclear, but one possibility is that, when retrieval is difficult, variants that have been produced
recently become increasingly accessible for retrieval on subsequent productions through rep-
etition priming (Hudson Kam, 2019; Schwab et al., 2018). These ideas are consistent with
models in which language production is not simply a perfect reflection of what has been
learned but is also constrained by online demands like ease of retrieval (Goldberg & Ferreira,
2022; MacDonald, 2013). On such an account, we might expect that regularization would
target both predictable and unpredictable variation since an overall higher frequency form
might be more easily retrieved in general, even if specific lexical items had been encountered
in different constructions.

Several previous studies suggest that memory retrieval is a factor in driving the regulariza-
tion of unpredictable variation. On the one hand, this hypothesis predicts less regularization
when retrieval is less taxing. Indeed, Hudson Kam and Chang (2009) found that adults more
closely matched the statistics of their input when the production task was made easier. Sim-
ilar results have been found with children, who seem to regularize less when the burden of
lexical access is eased through the use of English nouns in semi-artificial languages (Samara
et al., 2017; Wonnacott, 2011). Another way of getting at the question is to directly interfere
with working memory by asking participants to attend to multiple tasks simultaneously. This
method aims to disrupt a specific aspect of linguistic working memory—either encoding or
retrieval, depending on when it is administered—in order to provide evidence for its involve-
ment. Perfors (2012) performed such a manipulation during learning which, in line with the
production-side account, did not result in increased regularization. Hudson Kam (2019) repli-
cated this result with a much more complex language and offered some preliminary evidence
that a comparable manipulation during production may contribute to increased regulariza-
tion. Specifically, participants subject to interference during production seemed more likely
to regularize on an item-by-item basis (i.e., condition their use of different variants on lexical
items).

1.4. The present study

In this paper, we further explore the role of working memory (and memory retrieval) in
driving regularization of both predictable and unpredictable variation. In line with Perfors
(2012), our goal is to look for evidence of regularization in a simple language which isolates
the phenomenon of interest and removes superfluous elements like word order, transitivity,
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and negation that are present in the language of Hudson Kam (2019). However, in common
with Hudson Kam (2019), we ask whether interfering with working memory during language
production (rather than learning) leads to regularization. Additionally, we ask whether this
production-side mechanism targets predictable variation to the same extent as unpredictable.

To preview, we provide experimental evidence that regularization of both predictable and
unpredictable variation does indeed arise under memory load during production. Interest-
ingly, we also find that working memory limitations have some effect on regularization dur-
ing learning, contrary to previous studies. Finally, we implement a computational model of
regularization in production via a simple self-priming mechanism by which a high-frequency
variant becomes increasingly accessible for retrieval through repeated production.

2. Experiment

We use a 2×3 between-subjects design to investigate the effect of memory limitations
on the regularization of linguistic variation in six experimental conditions. We trained par-
ticipants on an artificial language exhibiting variation in nominal marking that was either
probabilistically lexically conditioned (PREDICTABLE conditions) or random (UNPREDICTABLE

conditions). We then tested participants’ ability to produce noun + marker combinations in
the language, and their ability to estimate the frequency with which particular noun+ marker
combinations had appeared in the input (a measure of learning, following previous work, e.g.,
Ferdinand et al., 2019). We used an interference task, modeled after the concurrent load tasks
used by Perfors (2012) and Hudson Kam (2019), to tax working memory during either learn-
ing (LEARNING LOAD conditions) or production (PRODUCTION LOAD conditions); in a third,
baseline condition, there was no such task (NO LOAD conditions).

In line with the production-side account of regularization, we predicted that participants
would produce a more regular language than the one they learned, regardless of the type of
variation (predictable or unpredictable). By contrast, we predicted no regularization in partici-
pants’ frequency estimates. In line with the memory retrieval hypothesis, we predicted that we
would see the clearest evidence for reduction of variation when taxing working memory dur-
ing production. Finally, to test our hypothesis about the relationship between predictable and
unpredictable languages, we predicted that the effect of memory limitations during production
would be modulated by variation type, with greater regularization of unpredictable languages.

2.1. Methods

The study was approved by the PPLS Ethics Committee at the University of Edinburgh and
was pre-registered with the Open Science Foundation (https://osf.io/vqyej).

2.1.1. Participants
We recruited 220 participants via Prolific. Participants were adult, self-reported native

English speakers with no known language disorders. They were provided with a download-
able information sheet and gave informed consent to participate. The experiment took around
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Table 1
Number of participants per condition submitted to analysis

Predictable Unpredictable

No load 29 28
Learning load 30 28
Production load 29 29

Table 2
Distribution of plural markers (Pi) across nouns (Nj) in the two variation conditions

(a) Predictable Input Languages

N1 N2 N3 N4 N5 N6 Total

P1 7 7 7 7 1 1 30
P2 1 1 1 1 7 7 18
Total 8 8 8 8 8 8 48

(b) Unpredictable Input Languages

N1 N2 N3 N4 N5 N6 Total
P1 5 5 5 5 5 5 30
P2 3 3 3 3 3 3 18
Total 8 8 8 8 8 8 48

20 minutes to complete (M = 18.01, SD = 8.48), for which participants were paid £3 (above
the UK national minimum wage). Forty-seven participants were excluded for the following
pre-registered reasons: self-reporting the use of written notes in an exit questionnaire contrary
to instructions (three), data saving errors (one), failing to provide usable data on more than
two critical trials (38),1 and button mashing (five).2 This left us with data from 173 partici-
pants (Table 1).

2.1.2. Materials
The artificial language consisted of orthographically presented labels paired with six

images. Each image depicted a pair of animals and was described by a two-word label: one
word for the noun and one word indicating plurality (presented in the English frame “Here
are two...”). Noun labels were designed to be similar to English onomatopoeia (e.g., “buzzo”
for a bee) to ensure that learning of this part of the label would be trivially easy for all partic-
ipants, regardless of memory load. Nouns were paired with one of two plural markers, both
non-English CVC monosyllables (“mej” and “huv”). The mapping of nouns to plural mark-
ers varied according to condition (Table 2). In PREDICTABLE conditions, the choice of one
plural or the other was probabilistically conditioned on the noun. Four nouns were randomly
assigned to one plural marker (the “regulars”) and two to the other marker (the “irregulars”).
A small amount of noise was then added to this mapping, such that, for n repetitions of
a given noun in the training set, that noun appeared with its assigned plural marker n− 1
times (87.5%) and once with the other marker (12.5%). This noisy conditioning meant that
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participants could regularize without having to produce a description they had never observed.
In UNPREDICTABLE conditions, plural markers varied randomly across nouns with no condi-
tioning: all nouns appeared with one marker 62.5% of the time and with the other 37.5% of
the time. Both markers appeared with the same overall frequency in the two variation condi-
tions, allowing us to assess the extent to which item-specific patterns affect the tendency to
regularize, even when the global language statistics are identical.

2.1.3. Procedure
The experiment was written in JavaScript using the JsPsych library (de Leeuw, 2015) and

ran in participants’ web browser. Participants were randomly assigned to one of the six con-
ditions at the start of the experiment. The experiment consisted of three phases: training,
production, and estimation.

In the training phase, participants were asked to learn the words used to describe the ani-
mals. Each of the six images was shown eight times for a total of 48 trials. The order of
presentation was randomized. On each training trial, an image was presented for 1000 ms and
then a description of the form “Here are two noun + plural” appeared below the image. The
image and description disappeared after 3000 ms and participants clicked a “continue” button
to advance to the next trial.

In the production phase, participants were asked to produce descriptions for the same set of
stimuli. Again, each of the six images was shown eight times for a total of 48 trials.3 On each
production trial, participants saw an image and a partial description, consisting of an English
frame and two gaps for the artificial words: “Here are two ”. They were asked to fill
in the gaps by clicking two buttons from an array consisting of all nouns and plural markers
in the language. This multiple-choice production task is intended to simulate the process of
a fluent speaker selecting words from a stably represented mental lexicon. It allows us to
observe the effects of online demands in production while minimizing the possibility that
participants’ choice of words is driven by incomplete learning.4 Buttons were blocked into
nouns (on the left) and plural markers (on the right), with the order of buttons randomized
within each block and a clear gap between blocks. However, participants were not forced to
click one button from the first block and one from the second. No feedback was provided;
participants simply saw the gaps filled with whichever words they had selected. The full label
they had assembled was displayed for 1000 ms before they advanced to the next trial.

Finally, in the estimation phase, participants were asked to estimate how often they had
seen each noun with each plural marker in training. All six images appeared in a random
order on one page, each accompanied by a continuous slider over percentages. All sliders
started in the middle, and participants were required to move every slider before they could
advance. Each slider had three labels: “always P1” at 0%, “equal P1/P2” at 50%, and “always
P2” at 100%. The assignment of plural markers to the two ends of the slider was randomized
for each participant, but identical for all sliders.

In LEARNING LOAD and PRODUCTION LOAD conditions, participants were told that we were
interested in how well people can learn or produce (respectively) a new language when the
task is difficult, so they would also be asked to memorize and recall short sequences of num-
bers alongside the main task. They were told that they would be given feedback throughout
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on their performance on this task. The aim was to occupy participants’ conscious attention
with the secondary task to disrupt the part of working memory they would otherwise have
devoted to the linguistic task. The task was sandwiched around (i.e., concurrent with) each
trial in either the training phase (LEARNING LOAD) or production phase (PRODUCTION LOAD).
First, a pseudorandom sequence of three digits was displayed for 2500 ms and participants
were asked to memorize the numbers in order. A new sequence was generated on each trial by
sampling the set of digits 0–9 without replacement, with the constraint that each digit n was
never neighbored on either side by n+ 1 or n− 1, preventing any obvious patterns appearing
in the sequences that might have made them easier to remember. Participants then completed
the main training or production trial. Immediately following this, participants were asked to
retype the numbers they had just memorized, in order. They were given feedback on the num-
ber of digits they had recalled in the correct position and how long they had taken to respond,
to encourage both speed and accuracy.

A schematic of the experimental procedure for the PRODUCTION LOAD conditions is given
in Fig. 1.

2.1.4. Analysis
We take an information theoretic approach (Shannon, 1948) to quantifying variation and

regularization (following, e.g., Ferdinand et al., 2019; Perfors, 2016; Samara et al., 2017;
Smith & Wonnacott, 2010). This analytic approach is sensitive even to small changes in fre-
quency distributions, regardless of whether those changes are in the direction predicted by the
input (i.e., even if participants regularize with the minority variant5). We report three specific
measures below: entropy, conditional entropy, and mutual information (MI). The first two
measures were pre-registered, the third is an addition which we explain below.

Entropy: The total amount of variability in a plural marking system is captured by the
entropy of the frequency distribution of plural markers across the language. Taking plural
marking as a discrete random variable V with possible variants v1 . . . vn which occur with
probability p(v1) . . . p(vn), the entropy of a language is given as

H (V ) = −
∑
vi∈V

p(vi)log2 p(vi).

More skewed distributions (i.e., languages in which one plural marker is used more fre-
quently) exhibit lower entropy. A maximally regular language (with only one plural marker)
would score 0, while a maximally irregular language (where both markers appear 50% of the
time) would score 1. Since the frequency distribution of plural markers across the input lan-
guages in both PREDICTABLE and UNPREDICTABLE conditions is identical, the languages are
matched for entropy (0.95 bits).

Conditional entropy: The predictability of a plural marking system can be measured by
considering how variable individual nouns are: a language where each noun only uses one
plural marker is more predictable than one where nouns can take any marker. The average
variability of individual nouns in a language is captured by the conditional entropy of the
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Fig. 1. Schematic of the experiment: PRODUCTION LOAD condition. Top to bottom, following arrows: training trial,
digit sequence presentation, production trial, digit sequence recall, feedback, and estimation trial. Participants in
LEARNING LOAD conditions would instead have seen the digit sequence presentation and recall trials sandwiched
around each training trial. Participants in NO LOAD conditions would not have seen these digit sequence trials.

frequency distribution of plural markers, given the noun being marked. Given a set of vari-
ants V (plural markers) and a set of contexts in which these variants appear C (nouns), the
conditional entropy of a language is given as

H (V |C) = −
∑
c j∈C

p(c j )
∑
vi∈V

p(vi|c j )log2 p(vi|c j).
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The variability of individual nouns in UNPREDICTABLE input languages mirrors that of the
language as a whole, so entropy and conditional entropy are matched for these languages
(0.95 bits on both measures). On the other hand, PREDICTABLE input languages have lower
conditional entropy since individual nouns in these languages are less variable than the lan-
guage as a whole (0.54 bits).

Mutual information: When either entropy or conditional entropy decreases, we can infer
that the language has become more regular in some sense. However, here we would like
to distinguish between regularization at the lexical level (i.e., a given plural marker used
more with a particular noun) and regularization across the language as a whole (i.e., a given
plural marker used more often overall). Conditional entropy does not allow us to do this
since it is affected by overall entropy: when a language becomes less variable overall, the
choice of plural marker necessarily becomes more predictable. We, therefore, added a third
measure to our set of pre-registered variables: mutual information (MI). MI is the difference
between the two entropy measures6 and allows us to isolate the amount of predictability that
is specifically explained by lexical conditioning. MI of 0 indicates a complete absence of
lexical conditioning; this is the case both when there is no variability (since there is nothing
to condition here), and when the variability of individual nouns mirrors that of the language
overall (as in the UNPREDICTABLE input languages). MI of 1 would indicate that the language
as a whole is maximally variable (i.e., the two plural markers are equally frequent overall), but
each noun is perfectly non-variable. PREDICTABLE input languages here score 0.41, reflecting
the presence of imperfect conditioning in a skewed overall frequency distribution.7

2.2. Experiment results

We analyzed the data in R (R Core Team, 2022). Each of the measures described in Sec-
tion 2.1.4 was calculated for the languages participants were trained on, the languages they
produced, and the languages described by their estimates. We investigate regularization as a
function of learning by comparing participants’ estimates to their training data. We investi-
gate regularization as a function of production by comparing participants’ productions to their
training data and to their estimates. The dependent variable in all analyses is, therefore, the
change in the given measure. We define regularization as a reliable decrease in entropy or a
reliable increase in MI. Plots in this section show population-level data; individual-level data
are available in Appendix A.

2.2.1. Pre-requisites
In order to test the hypotheses of interest, it is crucial that we first rule out the possibility

that any differences between conditions are driven by differences in vocabulary learning or
in performance on the interference task. The following mixed effects models were generated
using the lme4 package (Bates, Mächler, Bolker, & Walker, 2015) and include fixed effects of
variation type and memory load, and their interaction, as well as by-participant and by-item
random intercepts.
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Performance on the interference task was close to ceiling across conditions (overall, M =
2.84, SD = 0.57). Since the distribution of scores is very left-skewed, we take as our depen-
dent variable the error rate (calculated as 3—the number of correct digits), which approxi-
mates a Poisson distribution. We performed a mixed effects Poisson regression predicting the
error rate by condition. Model comparison revealed that neither variation type (χ2(2, 6) =
0.258, p= .879) nor memory load (χ2(2, 6)= 2.462, p= .292) were significant predictors of
performance. These results indicate that participants in all conditions were attending equally
well to this task. Furthermore, the level of performance indicates that participants took the
task seriously; we can, therefore, be confident that participants did not focus on the main
task to the exclusion of the interference task, which would obscure any possible effects in the
load conditions.

Noun learning was also close to ceiling across conditions (overall, M = 0.97, SD = 0.17).
We performed a mixed effects logistic regression predicting the log-likelihood of a correct
response by condition. Model comparison revealed that neither variation type (χ2(3, 8) =
1.278, p = .734) nor memory load (χ2(4, 8) = 2.719, p = .606) were significant predictors
of noun learning. These results indicate that participants in all conditions learned the lexicon
equally well.

In summary, any differences in regularization we see across conditions are not due to acci-
dental differences in performance on the memory load task or noun learning.

2.2.2. Main analysis
Inspection of the models specified in our pre-registration revealed that residuals were sig-

nificantly non-normally distributed (confirmed by Shapiro–Wilk tests) and had non-constant
variance over groups (confirmed by Breusch–Pagan tests for heteroscedasticity). Since our
data did not meet the assumptions for a linear modeling analysis, the analyses we present
here instead evaluate our pre-registered predictions using a simulation-based approach.8

Our null hypothesis is that participants’ responses reflect a probability-matching strategy
(e.g., Estes, 1976; Gardner, 1957; Hudson Kam & Newport, 2005). To determine how much
we can expect entropy and MI to change under this strategy, we simulate participants who
produce the majority marker for any given noun on any given trial with a probability equal to
its frequency in the input. We generate 10,000 runs of 30 such participants and calculate the
mean of each run. This gives us a distribution of expected means under the null hypothesis
against which we can z-score our real by-condition means. A z-score of < −1.96 indicates a
reliable decrease in entropy, while a z-score of > 1.96 indicates a reliable increase in MI.9

To identify main effects of our predictors, we take a permutation-based approach. The null
hypothesis is that different conditions do not give rise to substantially different behavior. We
can generate data that meets this assumption by randomly shuffling the labels for one pre-
dictor in our real data. For example, to test for a main effect of variation type, we shuffle
the column containing the PREDICTABLE/UNPREDICTABLE labels, thus breaking the associa-
tion between each data point and its condition label. We carry out this shuffling 10,000 times,
calculating the difference between condition means (in the example case, between the mean
of all PREDICTABLE and all UNPREDICTABLE conditions) for each run, to give us a distribution
of expected differences between conditions under the null hypothesis, against which we can
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z-score our real difference.10 A z-score of > 1.96 indicates that the observed difference
between conditions is reliably greater than would be expected by chance.

This permutation analysis also allows us to identify interactions between predictors. The
null hypothesis here is that the difference between the levels of one predictor is the same
across the levels of the other predictor, that is, the effect of memory load does not depend
on variation type or vice versa. Again, we can generate data that meets this assumption by
randomly shuffling the labels for one predictor in our real data. For example, to test whether
the effect of the PRODUCTION LOAD manipulation differs between variation types, we first
shuffle the column containing the PREDICTABLE/UNPREDICTABLE labels then calculate the dif-
ference between the PRODUCTION LOAD condition and other memory load conditions (col-
lapsed) separately for the PREDICTABLE and UNPREDICTABLE conditions, and finally calculate
the difference between these differences. We carry out this shuffling 10,000 times to gen-
erate a distribution of expected differences in differences under the null hypothesis, against
which we can z-score our real difference in differences. A z-score of > 1.96 indicates that the
observed difference in differences is reliably greater than would be expected by chance.

We can also calculate p-values for all reported statistics by counting the number of values in
the relevant null distribution that are as or more extreme than our observed value and dividing
this by the number of runs (10,000). Due to the finite nature of the sample, this sometimes
gives a value of exactly 0 or 1; in this case, we report p < .001 or p > .999.

Regularization during learning: We predicted that participants across conditions would
show no evidence of having learned a more regular language than the one they were trained
on. The estimation task results allow us to assess this prediction. The comparison of interest
is thus between the languages participants were trained on and the ones described by their
estimates.

Fig. 2a shows the change in entropy. In line with our prediction, we found no reliable
decrease in entropy: no condition mean falls below the lower tail of the corresponding null
distribution. However, as Fig. 2a shows, there was an increase in MI between the languages
participants in UNPREDICTABLE conditions were trained on and the ones described by their
estimates: the mean of each of these conditions is well above the null distribution. Permutation
analysis confirms a main effect of variation type (Z = 5.498, p < .001).

To summarize, these results show, in line with our prediction, that the learning process does
not drive regularization at a system-wide level: participants are able to encode the overall
frequency of different variants in their input. However, we do see evidence of a learning bias
for regularization at the lexical level, with learners in the UNPREDICTABLE conditions inferring
a pattern of conditioning when no such pattern exists in their input.

Regularization during production: Before analyzing participants’ production data, we got
rid of trials where the label produced was of an invalid form (i.e., anything other than noun +
plural) or where the noun was incorrect.11

Recall that we predicted that taxing working memory during production would lead to
greater regularization behavior. We also predicted that we would see greater regularization of
unpredictable languages and that this factor would modulate the size of the effect of memory
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Fig. 2. Change in entropy (left) and mutual information (right) between the languages participants were trained
on and the ones described by their estimates, by condition. Points represent condition means; error bars represent
bootstrapped 95% confidence intervals over the mean. Violins show the distribution of expected means under
the null hypothesis of probability-matching; regularization is indicated by means below the lower tail (entropy)
or above the upper tail (MI) of these distributions. There is no reliable decrease in entropy in any condition,
indicating that participants did not underestimate the total amount of variation in their input. However, there is
a reliable increase in MI between the languages participants in UNPREDICTABLE conditions were trained on and
the ones described by their estimates, indicating that participants in these conditions overestimated the degree of
lexical conditioning present in their input.

limitations. To assess these predictions, the comparison of interest is between the languages
participants were trained on and the ones they produced.

Fig. 3a shows the change in entropy. In line with the first part of our prediction, the only
place we see a reliable drop-in entropy is the PRODUCTION LOAD conditions: the means
of these conditions (and no others) are both below the lower tail of the null distributions.
Permutation analysis confirms a main effect of memory load, with greater entropy drop in
PRODUCTION LOAD conditions than other memory load conditions (Z = −3.034, p = .001).
Contrary to our prediction, permutation analysis reveals no main effect of variation type
(Z = 0.620, p = .733). Although, descriptively, entropy does drop more in the UNPRE-
DICTABLE/PRODUCTION LOAD condition (M = −0.118) than in the PREDICTABLE/PRODUCTION

LOAD condition (M = −0.060), we find no statistical evidence that the effect of the produc-
tion load manipulation is stronger in the UNPREDICTABLE condition (Z = 1.092, p = .856).
In other words, there is no reliable interaction between variation type and memory load.

As shown in Fig. 3b, we observed an increase in MI across all conditions apart from
PREDICTABLE/NO LOAD (Z = 1.506, p = .065) and PREDICTABLE/PRODUCTION LOAD (Z =
−2.650, p = .996). On this measure, our data, therefore, suggest that there is a general
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(b)

Participants' produced languages vs. input languages

Fig. 3. Change in entropy (left) and mutual information (right) between the languages participants were trained
on and the ones they produced, by condition. Points represent condition means; error bars represent bootstrapped
95% confidence intervals over the mean. Violins show the distribution of expected means under the null hypothesis
of probability matching; regularization is indicated by means below the lower tail (entropy) or above the upper tail
(MI) of these distributions. Entropy decreases only in PRODUCTION LOAD conditions, indicating that taxing working
memory during production increases participants’ tendency to over-produce one variant relative to its frequency
in the input. MI, on the other hand, increases in all but the PREDICTABLE/NO LOAD and PREDICTABLE/PRODUCTION

conditions, and especially so in the UNPREDICTABLE/LEARNING LOAD condition. This seems to reflect a general
preference to produce lexically conditioned variation, amplified by memory limitations during learning.

tendency to introduce or boost lexical conditioning, not arising from the same memory mech-
anism that leads to entropy drop. In line with our prediction, permutation analysis confirms
a main effect of variation type, with a greater increase in MI in UNPREDICTABLE conditions
(Z = 2.999, p = .002).12 Permutation analysis also reveals a main effect of memory load.
However, as suggested by Fig. 3b, this is in the opposite direction than predicted: MI increases
less in PRODUCTION LOAD conditions than other memory load conditions (Z = −2.745,
p = .002). Since inspection of the means suggests that MI actually increased more in LEARN-
ING LOAD conditions, we carried out an exploratory analysis by collapsing NO LOAD and
PRODUCTION LOAD conditions together. Permutation analysis on this coding scheme supports
the notion that MI increases significantly more in LEARNING LOAD conditions than others
(Z = 3.596, p < .001), suggesting that the preference for lexical conditioning is amplified by
memory limitations during learning. The interaction analysis we ran for the entropy data is
clearly not warranted by the MI data since the main effect does not go in the predicted direc-
tion. We carried out a further exploratory analysis comparing LEARNING LOAD conditions
to other memory load conditions, but this analysis revealed no reliable interaction between
variation type and memory load (Z = −1.407, p = .081).
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(b)

Participants' produced languages vs. estimates

Fig. 4. Change in entropy (left) and mutual information (right) between the languages described by participants’
estimates and the ones they produced, by condition. Points represent condition means; error bars represent boot-
strapped 95% confidence intervals over the mean. Violins show the distribution of expected means under the
null hypothesis of probability matching; regularization is indicated by means below the lower tail (entropy)
or above the upper tail (MI) of these distributions. The same memory manipulation that drives regularization
behavior during production also predicts how much more regular participants are in production than in their esti-
mates in terms of entropy change. Participants produce a more deterministic pattern of conditioning than the one
described by their estimates in the majority of conditions; however, in the UNPREDICTABLE/NO LOAD and UNPRE-
DICTABLE/PRODUCTION LOAD conditions, learning effects account for all the increase in MI seen in production.

We also predicted that participants in all conditions would produce a more regular language
than the one described by their estimates. This pattern is what was found by Ferdinand et al.
(2019), who use it to argue that regularization is driven by production-side biases. In addition,
we predicted that the same factors that drive regularization behavior during production should
explain differences in regularity between participants’ productions and their estimates. Taken
together, we thus predicted that differences across conditions in the regularity of produc-
tions compared to input would be replicated when comparing productions to estimates.13 In
other words, when plotting the change in entropy and MI by condition, we would expect
to see similar patterns for the production-input comparison and the production-estimate
comparison.

Fig. 4a shows the difference in entropy. On this measure, participants were more regular
in production than in their estimates in all conditions except PREDICTABLE/NO LOAD (Z =
−1.385, p = 0.90) and UNPREDICTABLE/LEARNING LOAD (Z = −1.579, p = .067). In line
with our prediction, the same memory manipulation that drives regularization behavior during
production also predicts how much more regular participants are in production than in their
estimates: permutation analysis confirms a main effect of memory load, with greater entropy
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drop in PRODUCTION LOAD conditions than other memory load conditions (Z = −2.527,
p = .007). As in the production-input comparison, permutation analysis shows no main effect
of variation type (Z = 0.796, p = .218), and no interaction between variation type and mem-
ory load (Z = 1.075, p = .150).

Fig. 4b shows the difference in MI between participants’ productions and their esti-
mates. On this measure, participants were more regular in production than in their esti-
mates in all conditions except UNPREDICTABLE/NO LOAD (Z = −2.700, p = .997) and UNPRE-
DICTABLE/PRODUCTION LOAD (Z = −3.394, p = .999), suggesting that the increase in MI
seen in participants’ productions is accounted for by learning effects in these conditions.
Unlike in the production-input comparison, permutation analysis shows no main effect of
variation type (Z = 1.635, p = .051). However, as in the production-input comparison, per-
mutation analysis reveals a main effect of memory load in the opposite direction than
predicted: MI increases less in PRODUCTION LOAD conditions than others (Z = −2.251,
p = .011). Exploratory analysis comparing LEARNING LOAD conditions to other memory load
conditions (collapsed) supports the notion that MI increases significantly more in LEARNING

LOAD conditions than others (Z = 3.102, p < .001). Again, the interaction analysis we ran
for the entropy data is clearly not warranted by the MI data since the main effect does not go
in the predicted direction. We carried out a further exploratory analysis comparing LEARNING

LOAD conditions to other memory load conditions (collapsed), but this analysis revealed no
reliable interaction between variation type and memory load (Z = 1.551, p = .060).

To summarize, these results show, in line with our prediction, that reduction of overall
variability is driven by memory limitations during language production. By contrast, lexical
conditioning is boosted relative to the input almost across the board, and this tendency is even
more pronounced when memory is taxed during learning.

Fig. 5 shows an example of one participant’s behavior across the experiment. This par-
ticipant was in the UNPREDICTABLE/LEARNING LOAD condition, so they were trained on a
language with a 62.5/37.5 split between the two plural markers for every noun. Their esti-
mates describe a very different language: one where four nouns only appear with the majority
marker,14 one noun only appears with the minority marker, and the remaining noun has a
roughly 50/50 split between the two plurals. This language has entropy of 0.82 (compared to
the input entropy of 0.95) and MI of 0.64 (compared to the input MI of 0). The language they
produced was even more regular than their estimates in terms of lexical conditioning, with
MI of 0.85, but almost identical to the input in terms of the overall frequency distribution of
plural markers, with entropy of 0.94.

2.3. Discussion

In this experiment, we investigated whether working memory limitations during production
drive regularization of both predictable (conditioned) and unpredictable (random) variation.
In line with this hypothesis, we found evidence for a reduction in both types of variation when
memory was taxed during production. As in previous research (e.g., Ferdinand et al., 2019;
Hudson Kam & Newport, 2009; Saldana et al., 2021; Schwab et al., 2018), this effect was
not driven by learners failing to accurately encode the overall frequency of different variants
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Fig. 5. Example language estimated (middle) and produced (right) by one participant in the UNPRE-
DICTABLE/LEARNING LOAD condition, relative to the input (left). The participants’ estimates indicate that they
learned a pattern of lexical conditioning that was not present in the input; they then made this pattern even more
deterministic in production.

in their input. Importantly though, our results do not support an exclusively production-side
account of regularization. In particular, we found evidence for an increase in lexical con-
ditioning during both learning and production. In other words, a bias to reduce variability
by increasing conditioning affects both language users’ inferences during learning and their
(implicit) decisions during production.

Although we saw a reduction in overall variation when taxing memory during production
(a drop in entropy), we also observed a different kind of regularization in this experiment: an
increase in lexical conditioning. However, this effect was not driven by memory load during
production and was, if anything, amplified by taxing memory during learning. This suggests
that working memory limitations during language production can account for regularization
at the system-wide level but not at the lexical level. In other words, language users might over-
produce particular variants (relative to their frequency in the input) as a result of limitations
on memory retrieval, but this is not the mechanism by which variation becomes lexically
conditioned. This begs the question: What assumptions do we need to make about memory
retrieval processes in order to explain this discrepancy? In other words, how do limitations on
working memory during language production give rise to some properties of regularity but
not others? We turn to this question in the next section.

3. A model of production-side regularization

Historically, computational work has sought to explain regularization as a function of
learning biases (e.g., Culbertson et al., 2013; Perfors, 2012; Ramscar & Gitcho, 2007; Ram-
scar & Yarlett, 2007; Reali & Griffiths, 2009; Rische & Komarova, 2016). However, in our
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Fig. 6. An urn model conceptualization of nominal plural marking. Plural markers are represented as balls in urns
(nouns). When agents encounter a noun ni, they produce a plural marker by choosing a ball at random from the
associated urn Uni . In this case, the agent would produce “mej” with a probability of 0.625 for either noun.

experiment, we found that working memory limitations operating during language produc-
tion were a reliable predictor of regularization behavior. Furthermore, learning data (from the
estimation task) did not reveal any prior bias for the kind of regularity we saw emerging in
PRODUCTION LOAD conditions, that is, an overall loss of one variant in favor of another.

Previous work has suggested that the mechanism by which memory constraints result
in regularization is overretrieval of a more accessible form (Goldberg & Ferreira, 2022;
Hudson Kam and Chang, 2009; Marcus et al., 1992). More specifically, recent research
(Hudson Kam, 2019; Schwab et al., 2018) has speculated that a kind of repetition priming
might drive increased accessibility of forms that have been produced more recently. Here, we
implement this mechanism in a simple “urn” model (Hintzman, 1986; Nosofsky, 1986; Spike,
Stadler, Kirby, & Smith, 2017; Walsh, Möbius, Wade, & Schütze, 2010). We show that such
a model can capture the entropy decrease in our experimental PRODUCTION LOAD conditions
by means of a production process that causes one variant to be retrieved more than would be
predicted by its frequency in the input.

3.1. Details of the model

Urn models represent the object of interest (here, plural markers) as balls in an urn or set of
urns (here, nouns), where different variants correspond to different colored balls (Fig. 6). In
the basic urn model, an agent draws a ball randomly from an urn and observes its color, places
it back in the urn, and then repeats the selection process. Here, we model the memory load
effect as a simple self-priming mechanism using a Pólya urn model (see Mahmoud, 2008,
for an overview). In a Pólya urn model, k additional balls of the same color are added to the
urn after each draw. In this way, the probability of producing a particular variant depends
not only on that variant’s frequency in the input but also on the frequency with which it has

 15516709, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13435 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [02/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



20 of 38 A. Keogh, S. Kirby, J. Culbertson / Cognitive Science 48 (2024)

already been produced; observed values become more likely to be observed again. In other
words, variants that are produced more become even more accessible for retrieval in future
trials than would be predicted by the input statistics alone. Note that this process does not
inevitably favor the variant that had a higher frequency in the input: as long as an urn contains
both variants, it is always possible that the lower frequency one will be chosen on the first
trial and then boosted by the priming mechanism.

The population is a set of agents A who each learn a language L. Here, the language is a set
of nouns {n1, . . . , n6} ∈ N , each with an associated urn Uni containing plural markers from
the set {p1, p2} ∈ P. Since participants in the real experiment did not always learn the input
languages perfectly, we used the languages described by participants’ estimates as the input
to our agents. In this way, we can model the effect of production mechanisms after taking
learning effects into account.

Each agent a completes 48 production trials—eight for each noun (as in the real experi-
ment). On each trial, the agent encounters a random noun ni and produces a plural marker for
that noun by sampling the corresponding urn Uni . L is then updated according to the parame-
ters described in the next section.

3.1.1. Parameters
In order to find a model that would provide the best fit to the experiment data, we con-

sider all combinations of the following parameter settings for both PREDICTABLE and UNPRE-
DICTABLE input languages. These parameters are intended to spell out the details of how self-
priming through repeated production can give rise to regularization, and where this behavior
comes from—both at an individual and population level.

Priming scope: One possibility is that priming is context-sensitive: the variant that was
most recently produced for a given noun is more likely to be produced the next time that
noun is encountered. Alternatively, priming could be context-agnostic: the variant that was
produced on trial ti is more likely to be produced on trial ti+1, regardless of which nouns are
encountered on those two trials. The priming scope parameter, therefore, has three possible
values: within nouns, between nouns, or both.

Priming strength: Although we did observe regularization at a population level in our
experimental PRODUCTION LOAD conditions, there was substantial variation in the extent to
which individual participants showed this effect. We, therefore, wanted to allow agents in the
model to differ systematically from each other in the same way. To do so, we randomly select
a value of k for each agent: the number of additional balls they add to the relevant urns after
each draw. Thus, the strength of the priming mechanism is a property of individuals, not a
property of populations. We allow k to range between 0 and 8: at most, agents can add the
same number of balls as were in the urn to start with, but it is possible for them to add none
(and they can never take any away). Two parameters control the way k is selected.

First, we model the distribution of k in the population according to one of three distributions
from the beta-binomial family: uniform (α = β = 1), normal-like (α = β > 1), or u-shaped
(α < 1, β < 1). These distributions capture different types of populations. In the uniform
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distribution, all values of k are equally likely; in such a population, there is no concept of a
“typical” agent. In the normal-like distribution, values around the mean are the most likely and
extreme values (in either direction) are less likely. In the u-shaped distribution, extreme values
are more likely. Specifically, we parameterize this distribution such that the most likely value
is 0, the maximum value (given the range) is about half as likely, and values in the middle are
considerably less likely. Concretely, approximately 90% of agents will use a value of k at one
of the two extremes of the range.

Second, we consider all mean values of k in the set {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0} for each
distribution.15 We use this value to set the upper bound on the range of allowable values.16

We sample k according to the following procedure:

k←

⎧⎪⎨
⎪⎩

random.betabinom (n = 2m, α = 1, β = 1), if d == “uniform”

random.betabinom (n = 2m, α = 100, β = 100), if d == “normal-like”

random.betabinom (n = 2m, α = 0.05, β = 0.1), if d == “u-shaped”

where m is the mean priming strength and d is the population distribution.

Forgetting: In the basic Pólya urn model, the number of balls increases at every time step
when k > 0. We do not consider this situation here, since it would have the somewhat implau-
sible effect that agents who are most affected by the self-priming mechanism (i.e., those with
the most severely limited working memory) would also end up storing the largest number of
data points in memory. An alternative model is one where the amount of data remains constant
through the deletion of k balls from each urn for k that are added. We consider two deletion
methods: either k balls are randomly removed from the urn, or deletion always targets the k
oldest balls. The forgetting parameter, therefore, has two possible values: random or oldest.
Importantly, forgetting never preferentially targets the low-frequency variant (a condition that
was proposed to be essential in modeling of regularization during learning by Perfors, 2012).

3.1.2. Analysis
Each model is a unique combination of parameter settings. We ran 100 simulated experi-

ments with each model, each consisting of the same number of agents in the PREDICTABLE and
UNPREDICTABLE conditions as in the corresponding PRODUCTION LOAD conditions in the real
experiment. For each experiment, we calculated the mean change in entropy and MI (relative
to the input) by condition and obtained a 95% confidence interval around these means through
bootstrapping. We then averaged over the 100 experiments. To determine which model pro-
vides the best fit to the experiment data, we compared these simulated means and confidence
intervals to the corresponding means and confidence intervals of the PRODUCTION LOAD con-
ditions in the real experiment. Each model received a divergence score, which captures the
average absolute difference between the real and simulated means and confidence intervals
across conditions; lower scores indicate that the data generated by that model are more similar
to the real data.
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Fig. 7. Change in entropy (left) and mutual information (right) between input language and production output
for participants in the experimental PRODUCTION LOAD conditions and agents in the best-fit model. Parameter
settings were as follows: priming both within and between nouns, k (the priming strength parameter) drawn from
a u-shaped distribution with mean 2.0, and random forgetting.

3.2. Model results

Fig. 7 shows the data generated by the model that provided the best fit to the experiment
data overall. This model had priming both within and between nouns. The priming strength
parameter k was drawn from a u-shaped distribution with median 2.0, that is, k could take
any value in the set {0, 1, 2, 3, 4}, but extreme values were more likely. Balls were randomly
selected for deletion after new ones were added. Further details of the performance of different
parameter settings are available in Appendix B.

The inter-agent variation that arises by sampling k from some distribution on an agent-by-
agent basis is a demonstrably key component of these models. Fig. 8 shows the entropy results
for two models where all agents use the same value of k: either 1 (the lowest possible non-zero
value) or 4 (the highest possible value in the distribution used by the best-fit model). When k is
uniformly low, the model under-estimates both the mean decrease in entropy and the amount
of variance around this mean (as indicated by narrower confidence intervals for the model
than the experiment). When k is uniformly high, the model over-estimates the decrease in
entropy for both conditions. These results provide further evidence that the data we observed
in the experiment were generated by a population where individuals differ systematically
in their sensitivity to the memory load manipulation. Specifically, the superior performance
of the u-shaped distribution is suggestive of the nature of these individual differences: in
our experiment at least, it seems likely that we were dealing with a population where most
people were unaffected by the memory load manipulation, but those who were affected were
extremely so.
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Fig. 8. Change in entropy between input language and production output for participants in the experimental
PRODUCTION LOAD conditions and agents in two models with no inter-individual variation in priming strength.
These models use the same settings as the best-fit model discussed above for the priming scope and forgetting
parameters; the population distribution and mean priming strength parameters are not relevant when agents all use
the same value of k (the priming strength parameter). When k is low, the model underestimates the true decrease
in entropy. When k is high, the model over-estimates the decrease in entropy. These models demonstrate the
importance of individual differences in priming strength for capturing the experiment results.

Finally, when agents sample from their input with no priming between trials (i.e., k = 0
for all agents), there is no significant drop in entropy: results mirror those of the experimental
NO LOAD conditions (Fig. 9). This underlines the importance of a production-side mechanism
for capturing the experiment results; imperfections in the learning process are not enough to
explain the drop in entropy during production.

3.3. Discussion

With this model, we have shown that production mechanisms alone can give rise to levels of
regularization comparable to those seen in our experiment, without the need for any prior bias
against variability. Specifically, the mechanism implemented by our Pólya urn model can be
thought of as a kind of self-priming: rather than agents sampling faithfully from the data they
learned, the production process distorts the representation of that data that they draw on during
production such that a recently produced variant becomes even more accessible for retrieval
in future. Importantly, this distortion is frequency independent: none of our parameter settings
involve preferential forgetting of irregular items or preferential retrieval of regular items (cf.
Perfors, 2012, where such a model was argued to be the only way that regularization could
arise from memory limitations during learning). Thus, the skew in the input itself provides
the necessary conditions for regularization to occur under a neutral self-priming process.

In our experiment, we saw that the direction of travel was the same for both predictable and
unpredictable variation—towards regularity. However, at least descriptively, unpredictable
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Fig. 9. Change in entropy between input language and production output for participants in the experimental NO

LOAD conditions and agents in a model with no priming (k = 0 for all agents). When agents sample faithfully from
their input, results mirror those of the experimental NO LOAD conditions, that is, no evidence of regularization.

languages tended to change more. One important aspect of these models is that the same
parameter settings, applied to the two language types, generate a similar asymmetry. In other
words, there is no need to posit different production-side biases targeting the different types
of variation: the properties of the input—and differential learning of the two language types—
naturally give rise to different amounts of regularization. However, it is true that our models
generally perform better in the UNPREDICTABLE condition.

Finally, our results suggest that inter-individual variation in the strength of the priming
mechanism is a key ingredient; when priming strength is uniform across the population, the
models provide a poor fit to the experiment data. Furthermore, the best model of the popula-
tion is one in which individuals differ from each other quite radically: most agents fall at one
of the two extremes of priming strength, with very few in the middle.

Although our aim here was simply to provide a model that could account for our experi-
mental data, future work could look to apply the mechanism we suggest to other aspects of
natural language production that might be relevant to regularization. For example, our exper-
iment does not involve generalization to novel nouns, but this is certainly a task that can
increase the tendency to regularization (e.g., Wonnacott & Newport, 2005). Our model could
be extended to account for this: the use of a given variant with one noun would prime that
variant for all future nouns, whether or not those nouns have been seen before. Furthermore,
in both our experiment and model it was not possible to innovate new forms, which removes
one potential source of irregularization. This could be accounted for in the model through the
addition of an error rate parameter which allows for occasional distortions of the sampling
process, for example, the addition of an unattested ball to an urn.17

 15516709, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13435 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [02/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



A. Keogh, S. Kirby, J. Culbertson / Cognitive Science 48 (2024) 25 of 38

4. General discussion

In this study, we have added to a growing body of evidence showing that, even when lin-
guistic variation is accurately learned, it is not always accurately reproduced (e.g., Austin
et al., 2022; Ferdinand et al., 2019; Hudson Kam and Chang, 2009; Hudson Kam & Newport,
2009; Saldana et al., 2021; Schwab et al., 2018). Specifically, we have shown that constraints
on language production arising from memory limitations can result in the loss of both pre-
dictable and unpredictable variation. However, we also found evidence that regularization is
not exclusively an effect of production: the process by which random variation becomes con-
ditioned is better explained by learning biases. Humans are powerful statistical learners across
many domains, extracting even subtle regularities after very little exposure (see Saffran &
Kirkham, 2018, and Sherman, Graves, & Turk-Browne, 2020, for reviews). However, people
generally have poor perception of randomness and are quick to infer that random sequences
are actually structured (Bar-Hillel & Wagenaar, 1991; Gaissmaier & Schooler, 2008; Hyman
& Jenkin, 1956; Wolford, Newman, Miller, & Wig, 2004). Our results suggest that this bias
generalizes to language acquisition, causing learners to identify and internalize regularities
even when none existed in their input (Samara et al., 2017; Smith & Wonnacott, 2010).

4.1. Memory limitations: Learning or production effects?

In this study, we simulated the memory pressures inherent to language learning and produc-
tion through a concurrent load task (Hudson Kam, 2019; Perfors, 2012). Of course, language
users are not habitually asked to memorize and recall digit sequences during conversation,
so this is a somewhat artificial view of working memory’s role in language learning and use.
Nonetheless, if disrupting working memory during particular linguistic tasks has behavioral
consequences, we can infer that memory is a relevant constraint on those tasks generally.

Both our experimental and computational results suggest that memory limitations during
language production can account for regularization at the global level (i.e., an overall increase
in the frequency of one variant to the exclusion of others) but are not a particularly good pre-
dictor of regularization at the lexical level (i.e., the introduction of lexical conditioning). This
discrepancy makes sense considering the mechanism that we are proposing for the production
effect, whereby variants with a higher frequency (in either the observed data or in the output)
become ever more accessible, and therefore ever more likely to be retrieved for production
(Goldberg & Ferreira, 2022; Hudson Kam and Chang, 2009; Schwab et al., 2018). Introduc-
ing lexical conditioning, on the other hand, requires participants to boost the high-frequency
variant for some nouns and the low-frequency variant for others, a process that cannot be
easily explained under a memory retrieval account.

In fact, our exploratory analysis suggests that memory limitations during learning may
have a role to play in explaining the evolution of predictable patterns of variation. At first
glance, this result appears to dovetail with some earlier work in the “Less is More” tradition
(Newport, 1988; Newport, 1990). For example, simulated agents and recurrent neural net-
works have been shown to learn linguistic regularities better when they begin with some kind
of memory limitation—or input filter—and gradually mature (Elman, 1993; Goldowsky &
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Newport, 1993). It has been suggested that, by limiting the size of the sample from which
learners can draw inferences, these input filter mechanisms enhance the detection of mean-
ingful relationships (Kareev, 1995; Kareev, Lieberman & Lev, 1997). However, more recent
reanalysis (Brooks & Kempe, 2019; Rohde & Plaut, 2003; Rohde & Plaut, 1999) calls many
of these findings into question. Specifically, Rohde and Plaut (2003) point out that although
filtering mechanisms sometimes isolate the correct regularities, they just as often destroy
important parts of the data and identify spurious regularities instead. Indeed, this is exactly
what we see here: learners subject to the LEARNING LOAD manipulation are less successful at
faithfully reproducing the language they were exposed to because they are detecting patterns
that did not exist in their input.

Overall, our results lend support to the idea that regularization arises from memory con-
straints during language production but also suggest that this is not the whole story. If we
consider regularization as the process by which language becomes more systematic and
predictable—whether by reducing the number of variants in a system, or by specializing dif-
ferent variants for different contexts—then it appears that memory limitations are also doing
something important during learning.

4.2. Revisiting the relationship between predictable and unpredictable variation

One of the key aims of this study was to investigate whether linguistic variation is a single
phenomenon, with predictable and unpredictable variation constituting two points on the same
spectrum. The implication of such a characterization is that the same kinds of biases should
act on both types of variation. In other words, the same mechanisms that have been shown
to result in regularization of unpredictable variation should also target predictable variation.
Our results are consistent with this account when it comes to the effect of memory limitations
during language production.

However, our analysis also suggests that truly random variation is subject to distortion
during the learning process in a way that conditioned variation is not—even when that condi-
tioning is only probabilistic. In other words, even though learning biases could theoretically
have obscured the small amount of noise in our predictable languages, in fact participants’
estimates show that they were very aware of this noise and did not believe that they had been
exposed to a deterministic pattern of conditioning. Therefore, it appears that there may be
something special about unpredictable variation when it comes to learning. Specifically, our
results suggest that language learning is biased in favor of predictable dependencies between
elements in a system to the extent that even random systems will be analyzed as containing
such patterns. Future research could investigate how these learning biases play out across the
spectrum of variation; for example, a less deterministic version of our predictable language
might be subject to more distortion in learning.18

We observed two related but distinct biases in this study: a bias against variability of all
kinds (driven by production) and a bias against unpredictability (driven by both learning and
production). However, the second of these biases appears to be stronger: In both learning and
production, we saw much bigger changes in MI than in entropy. A question for future work is
how the relative strength of these biases interacts with the size of the system: with only two
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variants, as in our design, it is presumably not difficult to maintain both. Expanding the lan-
guage may heighten the pressure to regularize by losing some variants altogether, rather than
just by introducing conditioning (although see Hudson Kam & Newport, 2009). Our forced-
choice production task also minimized the kind of retrieval difficulties that we might expect to
result in increased use of one variant to the exclusion of others since participants were cued to
remember that there was another option even if they would have spontaneously favored a sin-
gle variant. We would expect a different kind of production task—with participants required
to free-type or orally produce their descriptions—to give rise both to a greater drop in entropy
overall (Hudson Kam and Chang, 2009), and to a stronger effect of the interference task,
especially if the language was more complex.

Overall, our results suggest that pragmatic factors alone cannot fully explain regularization
and that working memory limitations offer a plausible cognitive explanation for this phe-
nomenon. Specifically, we found that increased cognitive load during language production
gave rise to increased regularization of both predictable and unpredictable variation—in the
absence of any communication between participants or differences in pragmatic framing of
the task. Furthermore, a pragmatic account would not predict any regularization during learn-
ing, since the mechanisms implicated in such accounts only come into play during production.
However, our results clearly show that when participants produce a more predictable language
than the one they were exposed to, this is at least partly because they have failed to accurately
learn the randomness in their input.

4.3. Why do languages have variation at all?

Our results suggest that biases arising from memory limitations broadly disfavor linguistic
variation, even when that variation is predictable. From the perspective of language evolution,
one might, therefore, wonder why variation is so pervasive in natural languages. As with any
cognitive bias shaping language, the explanation for this is likely a combination of the fact that
these biases are weak (i.e., defeasible) and compete with other pressures shaping language.
Most obviously, patterns of linguistic usage are influenced by the social contexts in which
they are found: there is ample evidence to suggest that speakers use variation as a marker of
social identity (see Chambers & Schilling, 2018, for an overview). Furthermore, some types
of variation may be preferred because of cognitive biases pertaining to specific linguistic or
semantic categories (e.g., Christensen, Fusaroli, & Tylén, 2016; Holtz, Kirby, & Culbertson,
2022; Motamedi, Wolters, Naegeli, Kirby, & Schouwstra, 2022; Napoli & Sutton-Spence,
2014; Schouwstra & De Swart, 2014).

Individual differences in the strength of the regularization bias may also help to explain
how variation can persist in natural language. Our experimental data certainly suggest that
memory load does not lead to regularization across the board. In particular, a wide range of
behaviors were represented in our PRODUCTION LOAD conditions. Many participants in these
conditions seemed not to be hindered at all by the interference task, producing languages
with near-zero entropy change compared to the input.19 Some appeared to be moderately
affected, maintaining some but not all of the variation that was present in the input. And a
small handful were severely disrupted, producing only one variant in testing. Similarly, our

 15516709, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13435 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [02/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



28 of 38 A. Keogh, S. Kirby, J. Culbertson / Cognitive Science 48 (2024)

best-fit computational model was one in which the majority of agents actually had no propen-
sity towards regularization, but those who did tended to reduce variation quite substantially.
In terms of diachronic change in natural language then, if only some individuals have very
strong biases against variation, we should perhaps not expect that variation to be lost either
quickly or completely.

Finally, although this was not relevant in our study, systems of conditioned variation may
persist due to frequency-dependent patterns in regularity. Irregular forms tend to be highly
frequent, presumably making it easier to learn and retrieve the correct form (Cuskley et al.,
2014; Wu, Cotterell, & O’Donnell, 2019). Furthermore, learners are sensitive to the frequency
of specific exemplars (e.g., the frequency of the word went) as well as the frequency of mor-
phological types (e.g., the frequency of the -ed past tense marker), so it is not necessarily the
case that the “regular” variant is the most easily retrieved in all contexts (Arnon, 2015; Arnon
& Snider, 2010). Indeed, usage-based models (e.g., Bybee, 2006; Bybee, 2002; Hay, 2001;
Langacker, 1988) argue that the easiest variant to access in any given context is simply the
one that has been experienced most often in that context. In such models, linguistic data form
memory representations whereby items that are experienced frequently together start to form
a unit; these units then come to be processed and retrieved holistically and thus become resis-
tant to restructuring (Bybee, 1985; Bybee & Thompson, 1997). There is also growing recog-
nition that learners actually start out with such holistic units in some cases, especially for
high-frequency items (Arnon & Clark, 2011; Chevrot, Dugua, & Fayol, 2008; Christiansen &
Arnon, 2017; Havron & Arnon, 2021; Lieven, Pine, & Baldwin, 1997; Pine & Lieven, 1997;
Siegelman & Arnon, 2015). In this case, lexically conditioned variation may persist because
highly frequent irregular items never get segmented, and thus, when producing these items,
there is no process of retrieving individual morphemes during which an alternative form could
be retrieved (cf. Pinker & Ullman, 2002). Therefore, while regularization might arise when
a high-frequency type is extended to a less familiar context (Harmon & Kapatsinski, 2017;
Koranda, Zettersten, & MacDonald, 2018; Wonnacott, 2011), high-frequency irregular items
are likely to be evolutionarily stable. All nouns in our design were equally frequent, so our
results do not speak to any potential relationship between frequency and memory limitations
in driving regularization. However, the paradigm we present here could certainly be used to
test this hypothesis.

5. Conclusion

We have provided evidence that cognitive biases leading to regularization target both
unpredictable and predictable variation. Our findings support the idea that regularization is
particularly strong during production and is driven at least in part by memory limitations.
However, our results also suggest that this is not the whole story; while over-retrieval of a
more accessible variant during language production may act to reduce overall variability,
unpredictability appears to decrease more as a result of inferences formed during learning.
Overall, this study lends support to the notion that cognitive constraints in individuals
can give rise to particular structures in languages. Specifically, we argue that—all things
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equal—regularities that allow languages to pass more easily through the bottleneck imposed
by working memory limitations will tend to accumulate as languages evolve, leading to the
appearance of typological universals.
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Notes

1 Either by producing an invalid label type (noun+ noun, marker+ marker, or marker+
noun; the only valid label type was noun+ marker), or by producing an incorrect noun.

2 Defined as clicking buttons in the same left-right position on more than 90% of trials.
3 Due to a technical error, the order of presentation was not fully randomized in this

phase. Instead, all participants saw eight passes through the stimuli set in the same
randomized order each time. We have no reason to expect that this would have affected
participant behavior.

4 This potentially reduces the strength of regularization behavior compared to a free pro-
duction task, but it is still a task where regularization can be observed with the right
analysis techniques, for example, Ferdinand et al. (2019)

5 For example, due to primacy or recency effects (Ferdinand et al., 2019).
6 H (V )− H (V |C).
7 Note that, although participants could in principle produce a language with MI of 1,

this is not what we would see if they simply produced a deterministic version of the
conditioning pattern in their input (i.e., four nouns with one marker and two with the
other); such a language would score 0.92.

8 The pattern of results under this analysis is identical to the one obtained from our pre-
registered linear models.

9 Note that we do not draw any inferences from significantly positive z-scores for entropy
change or significantly negative z-scores for MI change: none of our predictions are
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about an increase in variability, so our focus is simply on whether there is or is not
evidence for regularization. In other words, these are all one-tailed tests.

10 Shuffling in this way will, on average, give the same mean in each condition, so
the resulting distribution will be normal and centered around 0, that is, no difference
between conditions.

11 This resulted in the exclusion of 322 (out of 8,433) trials. Of these, the word occupying
the noun slot was an incorrect noun on 267 trials, of which the label was a valid noun+
plural form on 168 trials; on the remaining 99 trials, the word occupying the plural slot
was another noun, suggesting that the participant had tried to correct their mistake with
their second click (as indicated in some debrief questionnaires). Of the remaining 55
trials, there were 34 cases where the noun was correct but the label was invalid because
the noun had been duplicated. In 11 cases, the noun was correct but the words were in
the wrong order (i.e., the label was of the form plural + noun).

12 Note that there was more scope for MI to increase in UNPREDICTABLE conditions
because the starting point (0) was lower for these languages than in PREDICTABLE con-
ditions (0.41).

13 In this case, we compare the real by-condition means to the mean of a corresponding
simulated condition where participants probability match their estimates (rather than
the input).

14 Rounding up for “ruffo”: this slider was set to 99%.
15 A mean greater than 4 would allow k to take values outside of the defined range.
16 Strictly speaking, this parameter controls the median of the u-shaped distribution rather

than the mean, since the distribution is asymmetric.
17 Thank you to an anonymous reviewer for these interesting suggestions.
18 Thank you to an anonymous reviewer for this suggestion.
19 Although we would expect to see fewer participants in this category if the production

task itself was more taxing, that is, free production rather than forced-choice.
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Appendix A: Individual-level experimental data
All plots in this appendix show individual participants as colored points and condition means
as black points. Error bars represented bootstrapped 95% confidence intervals over the mean.
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Fig. A.1. Change in entropy (left) and MI (right) between the languages participants were trained on and the ones
described by their estimates, by condition.
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Fig. A.2. Change in entropy (left) and MI (right) between the languages participants were trained on and the ones
they produced, by condition.
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Fig. A.3. Change in entropy (left) and MI (right) between the languages described by participants’ estimates and
the ones they produced, by condition.
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Appendix B: Additional model analysis
In general, all computational models were closer to the real data on entropy than MI, mean-
ing that they were capturing the overall loss of variation better than the increase in lexical
conditioning. Different settings of the priming scope parameter in particular generated very
different results for the two measures, as shown in Table B.1. On average, “within-nouns”
models performed considerably better than others on entropy. However, these models dramat-
ically overestimated the change in MI relative to the experiment, since priming only within
nouns leads to a very high likelihood of lexical conditioning (i.e., an increase in MI). In fact,
the single best-fit model to the entropy data (divergence = 0.046) provided one of the worst
fits to the MI data (divergence = 1.103), meaning that it was impossible to select a single
model that could capture both effects in the experiment. “Between-nouns” models exhibited
the opposite problem: while some models provided a reasonable fit for the UNPREDICTABLE

condition, MI always decreased more in the PREDICTABLE condition than in the real exper-
iment. Although “between-nouns” models had the lowest average divergence score overall,
the single best-fitting model used the “within-and-between” setting. Moreover, these models
had the most similar performance between entropy and MI.

The performance of different settings for the mean priming strength and forgetting param-
eters depended heavily on priming scope and varied between measures. For entropy, there
was a negative correlation between mean priming strength and average divergence scores for
“within-nouns” models and a positive correlation for others. In other words, higher means
provided a better fit for “within-nouns” models, while lower means performed better for
“between-nouns” and “within and between” models. Similarly, models with “oldest” for-
getting performed marginally better than “random” models when priming was only within
nouns, but considerably worse when priming was between nouns or both within and between.
Overall, averaging over different settings of the priming scope parameter, higher means
(Table B.2), and “oldest” forgetting (Table B.3) always provided a worse fit.

In terms of the population distribution parameter, there was relatively little difference
between uniform and normal-like models (especially on entropy), but u-shaped models con-
siderably out-performed both across the board (Table B.4). In fact, the top 10 best-fitting
models overall all used the u-shaped distribution.

Table B.1
Divergence scores for different settings of the priming scope parameter

Priming Scope Entropy MI Overall

Within nouns 0.122 0.618 0.370
Between nouns 0.298 0.374 0.336
Within and between 0.411 0.334 0.372

Abbreviation: MI, mutual information.
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Table B.2
Divergence scores for different settings of the mean priming strength parameter

Mean priming strength Entropy MI Overall

1.0 0.130 0.310 0.220
1.5 0.156 0.361 0.258
2.0 0.205 0.408 0.307
2.5 0.264 0.447 0.356
3.0 0.325 0.488 0.407
3.5 0.395 0.524 0.459
4.0 0.462 0.555 0.508

Abbreviation: MI, mutual information.

Table B.3
Divergence scores for different settings of the forgetting parameter

Forgetting Entropy MI Overall

Random 0.149 0.376 0.262
Oldest 0.405 0.508 0.456

Abbreviation: MI, mutual information.

Table B.4
Divergence scores for different settings of the population distribution parameter

Population distribution Entropy MI Overall

Uniform 0.306 0.476 0.391
Normal-like 0.306 0.537 0.421
U-shaped 0.219 0.313 0.266

Abbreviation: MI, mutual information.
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