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Abstract

Cross-linguistically, lexicons tend to be more phonetically clustered than required by the phono-

tactics of the language; that is, words within a language are more similar to each other than

they need to be. In this study, we investigate how this property evolves under the influence

of competing communicative pressures: a production-side pressure to re-use more easily ar-

ticulated sounds, and a comprehension-side pressure for distinctiveness of wordforms. In an

exemplar-based computational model and a communication experiment using a miniature arti-

ficial language, we show that natural-language-like levels of clustering emerge from a trade-off

between these pressures. With only one pressure at work, the resulting lexicons tend to inhabit

an extreme region of the possible design space: production pressures alone give rise to maxi-

mally clustered lexicons, while comprehension pressures alone give rise to maximally disperse

lexicons. We also test whether clustering emerges more strongly for high-frequency items, but

our results lend support only to a weak relationship between frequency and clustering. Over-

all, this study adds to a growing body of evidence showing that mechanisms operating at the

level of individual language users and individual episodes of communication can give rise to

emergent structural properties of language.

Keywords: language evolution; communication; efficiency; lexicon; computational modelling;

artificial language learning
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1 Introduction1

Different languages have different rules about how sounds can be combined to form words.2

For example, “zad” is an unattested but possible word of English, whereas “zbad” is both3

unattested and impossible (but could be a word of Polish). Naturally, the fact that these rules4

differ between languages means that words within a language generally sound more similar5

to each other than they do to words of other languages. Indeed, both infants (Jusczyk et al.6

1993; Mehler et al. 1988; Moon et al. 1993) and adults (Lorch & Meara 1989; Marks et al. 2003;7

Stockmal et al. 1996) can discriminate surprisingly well between languages, even ones they8

don’t know.9

Perhaps less obvious is the fact that, even within a language, possible sounds and sound10

combinations are not necessarily equally frequent. Figure 1 gives a sense that, while “zad” is11

a phonotactically legal sound sequence in English, it is perhaps not very likely to be coined12

as a new word: the [z] phoneme is relatively uncommon in English (especially in word-initial13

position), and the [zæ] biphone is extremely low-frequency. This skewed distribution is not14

unique to English: it is a common property across languages that not all possible sounds or15

sound sequences are equally frequent (Krevitt & Griffith 1972; Macklin-Cordes & Round 2020;16

Martindale et al. 1996). As a result, words within a language are actually more similar to each17

other than they really need to be. In other words, lexicons are phonetically clustered.18
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Figure 1: Type frequency of all phonemes and biphones of English, derived from the British National Corpus (BNC
Consortium 2007) using List 1.2 (rank frequency list for the whole corpus, limited to words with a frequency of at
least 100 per million) from Leech et al. (2001), converted to IPA using the eng-to-ipa package in Python (https:
//pypi.org/project/eng-to-ipa/). Yellow bars and arrows indicate the [z] phoneme in the left-hand and middle
panels, and the [zæ] biphone in the right-hand panel. The specific identity of other phonemes/biphones is not
shown on the x-axis for ease of presentation; there are 36 unique phonemes and 670 unique biphones represented in
the word list. The key observation is that the shape of all these distributions is skewed: certain sounds and sound
sequences are considerably more frequent than others.

Naively, we might expect languages to use up their available phonotactic space more uni-19

formly; that is, words could be evenly distributed in this space to avoid repeating sound se-20

quences where possible. Successful communication depends on listeners being able to perceive21

and interpret a speaker’s message with a high degree of accuracy. And since communication22

takes place over a noisy channel (Gibson et al. 2013; Levy 2008; Shannon 1948), there is always23
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a possibility that information will be lost; a lexicon that maximised the distance between words24

would reduce this possibility (Flemming 2004). Indeed, we know that comprehension is eas-25

ier when words are more distinct: in line with the Neighbourhood Activation Model (Luce &26

Pisoni 1998), words from sparser phonological neighbourhoods and less densely connected ar-27

eas of the lexical network (i.e. words that are less similar to other words) are recognised more28

quickly and accurately, especially in noisy conditions (Chan & Vitevitch 2009; Cluff & Luce29

1990; Goldinger et al. 1989; Magnuson et al. 2007; Siew & Vitevitch 2016; Vitevitch & Luce30

1998).31

However, the effect of word similarity on comprehension is not completely straightfor-32

ward. In particular, increases in phonotactic probability (which reflects the existence of high-33

frequency sound sequences within a word) have been found to be beneficial for word recog-34

nition (Vitevitch & Luce 1998, 1999; Vitevitch et al. 1997, 1999) Furthermore, there is good35

evidence that spoken word production is facilitated by increases in both neighbourhood density36

and phonotactic probability (Chen & Mirman 2012; Gahl et al. 2012; Goldrick & Larson 2008;37

Goldrick & Rapp 2007; Munson 2001; Stemberger 2004; Vitevitch & Luce 1998, 2005; Vitevitch38

& Sommers 2003; Vitevitch et al. 2004). That is, words that are more similar to other words are39

generally pronounced more quickly and accurately.40

This suggests that communication involves a complex interplay of different functional pres-41

sures coming from both production and perception, and taken together these do not straightfor-42

wardly point to an overall advantage or disadvantage of word similarity. How might language43

users balance these competing pressures in a way that leads to phonetically clustered lexicons?44

Almost 80 years ago, the linguist George Kingsley Zipf claimed that the organisational struc-45

ture of languages is shaped by a trade-off between a pressure for accurate communication on46

the one hand, and a pressure for efficiency on the other (Zipf 1949). Although this claim is most47

famously instantiated in the “Law of Abbreviation” — whereby more frequent words tend to48

be shorter — Zipf also argued that languages should preferentially re-use easy-to-articulate49

sounds over more difficult sounds (Zipf 1935). A related argument was made by Piantadosi50

et al. (2012), who suggest that an efficient communication system should re-use more easily51

produced words and sounds, even if doing so results in some ambiguity.52

Of course, there are several reasons why lexicons might re-use particular sounds more than53

others (as in Figure 1), not all of which point to an adaptive explanation. For example, we54

would expect certain sounds to reoccur across many words in languages with productive mor-55

phology: unkind, unsatisfying and unpleasant all sound somewhat similar because of a shared56

prefix, while tangled, entangle and disentangle all sound extremely similar because of a shared57

root. Words that sound similar may also tend to have similar meanings (Dautriche et al. 2017b;58

Monaghan et al. 2014) or syntactic functions (Kelly 1992), although form-meaning correspon-59

dences are generally very subtle; phonaesthemes are a notable exception (Bergen 2004). And60

many words that map to distinct categories in their modern form trace their origins back to a61

shared ancestor; for example, skirt and shirt sound similar because they both come from the62
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Old Norse skyrta.63

Naturally, phonotactic constraints are also a major source of phonetic clustering: sounds64

and sound sequences that can appear in more contexts will be more frequent across a lan-65

guage. Nonetheless, corpus analysis reveals a cross-linguistic tendency for lexicons to be even66

more clustered than required by the phonotactics of the language (Dautriche et al. 2017a). In67

particular, across a range of word lengths, high-frequency words tend to be more tightly clus-68

tered – both in terms of neighbourhood density and phonotactic probability – while lower69

frequency words tend to be more distinctive (Frauenfelder et al. 1993; King & Wedel 2020;70

Landauer & Streeter 1973; Mahowald et al. 2018; Meylan & Griffiths 2024). This pattern is71

suggestive of adaptation for efficient communication (Gibson et al. 2019; Jaeger & Tily 2011),72

since it minimises production effort for items that are produced most often, and maximises un-73

derstandability for low-frequency items, which are often harder to process in comprehension74

(Brysbaert et al. 2018). More generally, the fact that lexicons are observably less disperse than75

they could be suggests that, overall, the advantages associated with word similarity outweigh76

the disadvantages. However, corpus data alone cannot provide causal evidence of a relation-77

ship between particular functional pressures and the structure of language.78

In this study, we investigate how production and comprehension pressures compete to79

shape the degree of phonetic clustering in the lexicon. First, we set out an agent-based compu-80

tational model of sound change (Section 2). In line with the psycholinguistic evidence reviewed81

above, we model production and comprehension pressures that pull in opposite directions. We82

test the prediction that natural-language-like lexicons will emerge only under the combined in-83

fluence of both. In particular, we test whether clustered lexicons emerge, and whether this clus-84

tering is found particularly for high frequency words. To further explore the role of production85

and comprehension in shaping the lexicon, we then model a similar process in a behavioral86

experiment in which human participants communicate with a partner using a miniature arti-87

ficial language (Section 3). To preview our results, the lexicons that emerged from our model88

when both production and comprehension pressures were at play were more clustered than89

those generated by comprehension pressures alone, but more disperse than those generated by90

production pressures alone. Similarly, in the experiment, manipulating the difficulty of only91

the production task or only the comprehension task gave rise to behaviours at one extreme or92

the other. When both tasks were difficult, participants adopted a variety of strategies, but over-93

all there was more of a balance between ease of production and ease of perception. However,94

the effect of frequency on emergent lexicons was less clear; there was a subtle tendency in the95

model for more frequent words to become more clustered, but this pattern did not robustly96

materialise in the experiment.97
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2 Computational model98

We use an agent-based exemplar model (Nosofsky 1986; Wedel 2006) to test how mechanisms99

operating during individual episodes of production and comprehension might influence the100

degree of phonetic clustering present in a lexicon over time. In this model, pairs of agents101

use a miniature artificial language to communicate with each other over repeated rounds. In102

each communication round, agents take turns producing and interpreting signals, with some103

mechanisms that would be expected to favour or disfavour word similarity encoded within104

these processes (described in Section 2.1.3). Signals that result in successful communication are105

strengthened over time, while unsuccessful signals are more likely to drop out of the agents’106

memory. At the end of every round, we observe the state of the lexicon. The following section107

describes all of these components in detail; an overview is given in Figure 2. Readers wishing108

to skip the technical details can move on to Section 2.3 to see the results.109

2.1 Details of the model110

The model is implemented in Python 3.11; full code is available at https://osf.io/vsy6z/.111

2.1.1 The agents112

Each agent maintains their own independent internal representation of the lexicon, based on113

prior evidence. An agent’s internal representation consists of 20 atomic meaning categories114

(represented by integers), each associated with a collection of signals. In the most basic version115

of the model, all meanings are equally frequent; we implement a simple frequency manipula-116

tion in Section 2.3.1. Each meaning category has a memory limit 𝑆 (default value = 10) which117

constrains the number of signals that can be associated with it at any given time-point. When118

a new signal needs to be added to a category that is already at this limit, a random older signal119

is deleted first.120

Since the model is exemplar-based, there is no abstract representation for agents to infer121

from the evidence they receive; rather, they store concrete exemplars of linguistic behaviour122

they’ve observed. As in Wedel (2012), we do not intend to make any claims about the specific123

nature of humans’ mental lexicons1; this architecture is simply a convenient and transparent124

way to capture the fact that there is always fine-grained phonetic variation below the level of125

“the lexicon”, and to show how this variation can provide the fodder for lexical evolution (Win-126

ter 2014). More specifically, while we might perceive words as having categorical boundaries,127

in reality, subtle variations in pronunciation mean that word boundaries are at least somewhat128

fuzzy, even within the same individual; different exemplars in our model can be thought of as129

representing this fuzziness.130

1The model could equally have been implemented in a Bayesian framework, with a compression-based prior
(Kirby et al. 2015) that would favour lexicons with fewer unique sounds and sound combinations.
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Figure 2: Overview of the model architecture for a single communication episode. Both agents maintain an inde-
pendent internal representation of the lexicon in the form of meaning categories (shapes) and associated signals
(exemplars). The Producer sends a signal to their partner to communicate about a target meaning, with two sources
of similarity bias in this process. First, exemplars within the target meaning category are activated to different
degrees depending on their phonotactic probability, meaning that exemplars that are more similar to others in the
lexicon are more likely to be retrieved. Second, once an exemplar has been retrieved, there is some probability of
an error being introduced into it during production; when an error is made, segments that are less frequent across
the lexicon tend to be replaced by those that are more frequent. The Receiver compares the received signal to their
stored exemplars to calculate a probability distribution over possible meanings, from which they sample a response;
more distinctive signals give higher weight on the target meaning category relative to all other categories and are
therefore more likely to result in successful communication, while signals that are more ambiguous between cate-
gories give a more uniform distribution over meanings and are therefore more likely to be misinterpreted. If the
Receiver correctly infers the Producer’s target meaning, both agents store the signal that was just sent as a new
exemplar in that meaning category.
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2.1.2 The lexicon131

The “words” agents store in our model are character strings Because we are interested in how132

clustering might emerge above and beyond the effects of word length (since shorter words133

are, necessarily, more similar to each other than longer words), word length is a constant in134

our model: all words are of length 8. For simplicity, the individual segments that make up a135

word are represented simply by letters, rather than by bundles of features or some other more136

phoneme-like representation (cf. Wedel 2012). Because of this simplification, it is not the case137

that segments can be more or less similar to each other: two segments are either identical, or138

they are different. Although this makes comparisons between words less nuanced, it is a rea-139

sonable simplification to improve model tractability, particularly given the lack of evidence that140

natural language lexicons are more clustered around highly distinctive contrasts than around141

more confusable contrasts (Dautriche et al. 2017a).142

At the start of each run of the model, we generate 20 words (one per meaning category)143

by randomly combining letters from the set of English consonants. Letters are drawn from a144

uniform distribution, meaning that there is no pressure towards clustering coming from the145

initial lexicons. We use these words to seed a process of exemplar creation: specifically, the146

starting set of exemplars in each meaning category is a collection of 𝑆 strings (where 𝑆 is the147

memory limit for that category), each of which is created by randomly substituting a single148

character from the seed word assigned to that category. For example, if the seed word for a149

category was “tam”, it could generate exemplars like “zam”, “tum”, and “tak”.150

Although agents therefore store a considerable amount of variation in their internal repre-151

sentation, we are treating exemplars as pronunciation variants of the same word, so we want152

to smooth out this within-category variation when we examine the state of the lexicon. To col-153

lapse an agents’ internal representation down to a single word per meaning category — the154

canonical or ‘average’ form of the word — we simply concatenate the most common character155

in each position across all exemplars in that category. For example, given a set of exemplars156

{“miq”, “mas”, “taq”, “maq”}, this process of concatenation would yield the word “maq”,157

since “m” is the most common first letter, “a” is the most common second letter, and “q” is the158

most common final letter.159

In order to analyse how the lexicon changes over time, and whether words are becoming160

more or less similar to each other, we calculate the average pairwise edit distance between words161

at each time step, including for the initial lexicon. Average pairwise edit distance, 𝐷 (𝐿), is162

given by:163

𝐷 (𝐿) =

∑
𝑖, 𝑗∈𝐿,𝑖≠ 𝑗

𝐿𝐷 (𝑖, 𝑗)

|𝐿 | · ( |𝐿 | − 1) (1)

where 𝐿 is the lexicon, |...| indicates cardinality (i.e. the number of words in 𝐿), 𝑖 and 𝑗164
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are words and 𝐿𝐷 (𝑖, 𝑗) is the Levenshtein distance between two words. That is, we calculate165

the edit distance between every pair of words in the lexicon, and then take the mean of these166

distances.167

Because we generate the seed words randomly — so that all characters are equally likely to168

appear in all positions — words in the initial lexicon are always very different from each other:169

across 1,000 randomly generated lexicons, average pairwise edit distance had a mean value of170

7.54 (𝑆𝐷 = 0.05). In other words, in the initial lexicon, any two randomly selected words will171

usually differ at every position. If words are becoming more similar to each other over time,172

this would be reflected by a decrease in average pairwise edit distance.173

2.1.3 Communication174

In each communication round, agents take turns as Producer and Receiver for all meanings.175

The Producer’s task is to transmit a signal given a target meaning; the Receiver’s task is to176

decode the intended meaning given a received signal. Whenever the Receiver successfully177

recovers the meaning of a signal, both agents store that signal as a new exemplar in the relevant178

meaning category. Due to the memory limit described in Section 2.1.1, exemplars that are either179

not used or do not result in successful communication will tend to drop out of the agents’180

internal representations over time.181

Production Production consists of two stages: retrieval and articulation. In both of these182

stages, we build in observations from the psycholinguistic literature about how word similarity183

benefits word production. To summarise, exemplars that are more similar to others in the184

agent’s internal representation are retrieved more easily (Chen & Mirman 2012; Goldrick &185

Larson 2008; Vitevitch 2002; Vitevitch et al. 2004), and errors in the pronunciation of a target186

exemplar tend to replace lower frequency segments with higher frequency ones (Dell 1986;187

Goldrick & Rapp 2007; Levitt & Healy 1985; Motley & Baars 1975; Munson 2001), thus creating188

sequences with higher phonotactic probability.189

More specifically, production begins with the random choice of an exemplar from the tar-190

get meaning category, where the probability of a particular choice depends on its phonotactic191

probability (average bigram positional probabilities across the string); exemplars with higher192

phonotactic probability are more strongly activated (the retrieval bias parameter). Before the193

exemplar is transmitted to the Receiver, an error is introduced into it with probability 𝐸2. All194

errors involve the substitution of a single segment in a randomly chosen position. The new195

2In the simulations presented below, we use an unrealistically high 𝐸 of 0.5, which would imply that language
users mispronounce words around half the time. Using a larger 𝐸 does not qualitatively change the results com-
pared to a smaller 𝐸 , but does allow effects to be seen in fewer time steps, which improves runtime. In any case, the
function of the error mechanism is to introduce variation that can provide the fodder for lexical evolution; similar
mechanisms in related models often apply to every production (e.g. Flego 2022; Wedel 2012; Wedel and Fatkullin
2017).
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segment is sampled from the set of segments in the language, where the probability of select-196

ing a particular segment depends on the frequency with which it occurs in the same context as197

the original segment across all exemplars in the agent’s internal representation (the error bias198

parameter). By default, we only consider a single preceding segment when calculating condi-199

tional segment frequencies; in this way, errors tend to create high-probability bigrams. We use200

Laplace smoothing with parameter 0.01 to assign non-zero probability to segments that were201

present in the initial lexicon but have dropped out entirely, or segments that don’t appear in202

a particular bigram. We also allow “substitution” to replace a segment with itself, which can203

happen when the segment targeted for error is very high-frequency in the given position; in204

this way, exemplars with high phonotactic probability in the language become less likely to be205

mispronounced.206

Reception The final signal created by the Producer, including any error, is transmitted to the207

Receiver along with a context (list of possible meanings) which they have to choose from. The208

nature of this context is controlled by a context size parameter, which can take one of three209

values: maximal (the default: all meanings in the lexicon), random (𝑛 randomly selected mean-210

ings, where 1 ≤ 𝑛 ≤ 20), or minimal (= 1)3.211

When the Receiver hears a signal, they must infer its meaning by comparing it to all their212

stored exemplars for each meaning category in the current context. If the context contains only213

one meaning, the Receiver automatically assigns the signal to that meaning category. Other-214

wise, the probability of recovering the intended meaning is calculated using the Generalized215

Context Model (Nosofsky 1986, 2011)4, which states that the probability of classifying stimulus216

𝑖 into category 𝑐𝑛 is given by:217

𝑃(𝑐𝑛 |𝑖) =
[∑

𝑗∈𝑐𝑛 𝑁 𝑗 · 𝜂𝑖 𝑗
]𝛾∑

𝑐∈𝐶 [∑𝑘∈𝑐 𝑁𝑘 · 𝜂𝑖𝑘]𝛾
(2)

where 𝜂𝑖 𝑗 denotes the similarity between exemplars 𝑖 and 𝑗 and 𝑁 𝑗 is the frequency of218

exemplar 𝑗 . The numerator is therefore simply the summed similarity score for the meaning219

category under consideration, and the denominator is the sum of all similarity scores for all220

meaning categories. 𝛾 is a response-scaling parameter which controls the Receiver’s sampling221

behaviour: when 𝛾 = 1, the Receiver responds by sampling directly from the distribution of222

relative summed similarities over all categories (i.e. probability matching), whereas for higher223

values of 𝛾, the Receiver responds more deterministically with the category that yields the224

largest summed similarity. Similarity between exemplars 𝑖 and 𝑗 is itself operationalised as the225

3Using the minimal context size removes comprehension pressures from the equation entirely, since the Receiver
has access to full information about the Producer’s intended meaning, rendering their task trivial. A real-life ana-
logue would be an utterance that takes place in a situation where there is only one salient possible interpretation.
In our case, where communication is essentially just a process of object labelling, it could also be thought of as a
Producer pointing at their intended referent.

4We exclude the category bias term used in the Generalized Context Model, since we want all categories to be
equally likely a priori.
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complement of the Levenshtein distance 𝐿𝐷 between the two strings, normalised by dividing226

by 𝑀 , the length of the longer string5:227

𝜂𝑖 𝑗 = 1 − 𝐿𝐷 (𝑖, 𝑗)
𝑀

(3)

The Receiver samples a meaning from the context using the relative similarity scores given228

by Equation 2 as weights. The effect of this reception mechanism is that more distinctive signals229

will be more likely to result in successful communication, since they will give higher weight on230

the target meaning category relative to all other categories. On the other hand, signals that are231

similar to exemplars in multiple categories will give a more uniform distribution over possible232

meanings, and are therefore more likely to be misinterpreted.233

2.1.4 Iteration234

At the end of every communication round, we extract the current state of the lexicon from one235

of the agents (randomly chosen) and calculate its average pairwise edit distance, 𝐷 (𝐿). A new236

communication round then starts; each run of the model consists of 4,000 such rounds. Note237

that there is no transmission of the language to naive individuals between communication238

rounds (cf. Kirby et al. 2015); the same pair of agents continue to communicate with each other239

throughout the simulation. Since there are no learning biases in this model, the only purpose240

of including naive agents would be to introduce a source of random drift, which is already241

provided by limiting our agents’ memory capacity (Spike et al. 2013, 2017).242

2.2 Simulations243

We use the model to run simulations in three conditions:244

• Production pressures only: Both the retrieval bias and error bias parameters are switched245

on, but context size is set to minimal, such that there is no inference on the Receiver’s part246

and communication is always successful.247

• Comprehension pressures only: Context size is set to maximal, requiring the Receiver to248

compare received signals to exemplars in all possible meaning categories to determine the249

Producer’s intended meaning. However, both the retrieval bias and error bias parameters250

are switched off: all exemplars have equal probability of being retrieved for production,251

and errors simply replace one random segment with another random segment.252

• Competing pressures: Both the retrieval bias and error bias parameters are switched on,253

and context size is set to maximal.254

5𝑀 is a constant in this case, since all words in our model are the same length.
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For the latter two conditions, we also test a range of different values for the Receiver’s 𝛾255

parameter (which influences how deterministically they choose the meaning category that best256

fits the received signal). For each configuration of parameter settings, we run 10 simulations —257

each with a different random input lexicon and set of starting exemplars.258

2.3 Results259

Recall that the measure of similarity we use here is average pairwise edit distance, 𝐷 (𝐿). When av-260

erage pairwise edit distance is lower, it mean that words are more similar to each other. Figure261

3 shows the change in average pairwise edit distance over time in three conditions. When only262

production pressures are present, the Producer’s similarity biases completely take over: lexi-263

cons become rapidly more clustered, often to the point of degeneracy (Kirby et al. 2015), where264

there is just one word for every meaning (𝐷 (𝐿) = 0). Conversely, when comprehensibility is265

the only pressure on the language, lexicons remain very disperse over time.266

When there is competition between similarity biases in production and the pressure for267

distinctiveness arising from communication, the result is a more balanced lexicon: words are268

somewhat more clustered together, but not to such an extreme degree (i.e. degeneracy) as in269

the production-only condition. The speed with which clustering increases depends on the270

strength of the comprehension-side pressure for distinctiveness, controlled by the Receiver’s 𝛾271

parameter: when 𝛾 is higher, the pressure for distinctiveness is weaker, which allows lexicons272

to change more rapidly. However, the curve eventually flattens out; this plateau can be thought273

of as the state in which words are as similar to each other as they can be whilst still allowing274

the Receiver to tell them apart with a reasonable level of accuracy.275

Overall then, when we allow lexicons to be shaped by only one aspect of communication,276

the results are extreme and bear little resemblance to natural languages. Words either become277

so similar that they cannot be distinguished at all (production-only), or they remain totally278

dispersed (comprehension-only). It is only when both pressures are present — as they are in279

real communication — that a middle ground emerges.280

2.3.1 Adding frequency effects281

As described in Section 1, the degree of clustering is not the same across all parts of natural282

language lexicons: more frequent words tend to be more similar to each other, while lower283

frequency words tend to be more distinctive (Frauenfelder et al. 1993; King & Wedel 2020;284

Landauer & Streeter 1973; Mahowald et al. 2018; Meylan & Griffiths 2024). In the model re-285

sults described above this effect is of course not observable, since all meanings were equally286

frequent. Next, we incorporate a simple notion of frequency to test whether the effect of fre-287

quency emerges from the model. Specifically, we assign 5 meanings to a high-frequency group,288

and the other 15 to a low-frequency group. During each round, agents communicate about the289
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Figure 3: Average pairwise edit distance over 4,000 communication rounds in three conditions; lower numbers
mean that words are more similar to each other. Bold lines represent the mean across 10 runs; shaded areas around
these lines represent ±1 standard deviation. Colours in the two right-hand plots represent different values of the
Receiver’s 𝛾 parameter, which controls the strength of the comprehension-side pressure for distinctiveness; higher
values correspond to a weaker distinctiveness pressure. With production pressures alone, lexicons rapidly degener-
ate. With comprehension pressures alone, lexicons remain in their starting state, where words are all very different
from each other. Only with competition between production and comprehension pressures does an intermediate
state emerge, in which lexicons become somewhat more clustered but ultimately stabilise.

high-frequency meanings three times as often as the low-frequency meanings (three trials per290

agent per high-frequency meaning, versus one for the low-frequency meanings). Additionally,291

we increase agents’ memory limit for high-frequency meanings to 30 (the memory limit for292

low-frequency meanings stays at 10) to capture the fact that high-frequency lexical items have293

stronger mental representations than their low-frequency counterparts (Alexandrov et al. 2011;294

Popov and Reder 2020; see also the multiple-trace hypothesis: Hintzman and Block 1971). The295

rest of the model architecture is identical.296

Figure 4 shows the change in average pairwise edit distance over time in the same three297

conditions as above, now additionally split by frequency. The results for the first two config-298

urations look very similar as in Figure 3, with no difference between frequent and infrequent299

words: lexicons remain in their starting state in the comprehension-only condition, and rapidly300

degenerate in the production-only condition. However, crucially, when production and com-301

prehension pressures are in competition, there is a very subtle effect of frequency. Specifically,302

clustering increases slightly more on average in the high-frequency component of the lexicon,303

but only when the Receiver’s 𝛾 parameter is low; this suggests that the benefits conferred by in-304

creased frequency (due to having a stronger mental representation for higher frequency items)305

are washed out when the Receiver is already very proficient at telling words apart.306

The effect of frequency becomes more apparent if we make two further modifications to307

the model architecture. First, we can modulate the strength of the producer biases such that308

they are stronger for higher frequency words. For example, in the case of word length, there309

is good evidence that speakers preferentially shorten high-frequency words (e.g. Bybee 2002;310
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Figure 4: Average pairwise edit distance for the high and low-frequency components of the lexicon over 4,000
communication rounds. With only production pressures, lexicons rapidly degenerate, with no difference between
frequent and infrequent words. With only comprehension pressures, both high and low-frequency words remain
very distinct over time. When both production and comprehension pressures are present, a very subtle effect of
frequency emerges: the high-frequency component of the lexicon becomes slightly more clustered than the low-
frequency component, but only when the Receiver’s 𝛾 parameter is low (top).

Kanwal et al. 2017; Mahowald et al. 2013; Pierrehumbert 2001). We can encode a similar pref-311

erence to maximise ease-of-production for high-frequency items in our model by raising the312

activation values given by the Producer’s retrieval bias parameter (described in Section 2.1.3)313

to the power of 2 when they are labelling a high-frequency meaning. This has the effect of314

exaggerating the preference for exemplars with high phonotactic probability. Second, we can315

treat high-frequency words as requiring less inference by the Receiver. The logic here is that316

high-frequency meanings will be weighted more highly a priori, so if a received signal is a good317

fit to a high-frequency category, the Receiver might not consider as many alternatives (note318

also that high-frequency words attract more attention early in processing: Dahan et al. 2001).319

We can operationalise this intuition by manipulating the context size parameter (described in320

Section 2.1.3): for high-frequency items, the Receiver only has to choose between 5 candidate321

meanings, while for low-frequency items, there are 15 candidate meanings. Figure 5 shows the322

results of this model configuration when production and comprehension pressures are in com-323

petition6. Here, the effect of frequency is much clearer: the high-frequency component of the324

lexicon becomes more clustered more quickly than the low-frequency component. However,325

6We only show this condition here since we have already established that there is no effect of frequency in the
other two conditions.
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again, this effect is only observable for lower values of the Receiver’s 𝛾 parameter.326
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Figure 5: Average pairwise edit distance for the high and low-frequency components of the lexicon when produc-
tion and comprehension pressures are in competition, with two additional modifications to the model architecture:
(1) Producer biases are stronger for high-frequency items, and (2) high-frequency items are more predictable for the
Receiver. In this configuration, an effect of frequency is evident when the Receiver’s 𝛾 parameter is low (left), but
still does not emerge for higher values of 𝛾 (right).

2.4 Model discussion327

Our model shows that phonetic clustering — a robust property of natural language lexicons328

— can emerge from initially random languages during repeated episodes of communication.329

Specifically, moderately-clustered lexicons emerge when there is competition between produc-330

tion pressures (which favour greater similarity between words) on the one hand, and compre-331

hension pressures (which favour greater distinctiveness) on the other. With just one or other332

of these pressures, lexicons tend to fall within an extreme region of the possible design space:333

under the influence of production pressures alone, lexicons degenerate to the point of being334

communicatively useless, while when comprehension is the only pressure, lexicons remain in335

their initial, maximally disperse state.336

Although models are always a simplification of the system they are designed to study, it is337

worth revisiting the specific simplifying assumptions we have made here. Firstly, as described338

in Section 2.1.2, we do not use a feature-based representation of the segments within a word,339

unlike in some similar models (e.g. Wedel 2012). Such a model architecture would probably340

improve the Receiver’s performance, by allowing them to make more sophisticated compar-341

isons between a received signal and their stored exemplars. However, since such fine-grained342

patterns of similarity do not feature in the calculations of phonotactic probability and bigram343

frequency that drive the Producer’s behaviour, we do not think there would be significant344

downstream consequences for the eventual outcome of the model. Rather, clustering would345

likely just emerge faster since greater success on the Receiver’s part results in more frequent346

storage of new exemplars and quicker turnover of old exemplars. In any case, corpus analysis347

suggests that a feature-based representation is unnecessary to explain the degree of clustering348
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in natural language lexicons(Dautriche et al. 2017a), which is the basis on which we made this349

simplification.350

Furthermore, whilst successful communication changes the agents’ internal representation,351

there is no such feedback loop from unsuccessful communication in the model. This is a com-352

mon feature of exemplar models in this tradition (e.g. Wedel 2012; Wedel & Fatkullin 2017),353

since there is no penalty on unsuccessful signals (beyond not being stored in the target cate-354

gory) encoded within the Generalised Context Model of signal reception (Nosofsky 1986, 2011).355

However, other frameworks exist that could capture the intuition that language users might try356

not to use variants that they do not believe to be communicatively useful. For example, var-357

ious types of models employ some kind of negative feedback after unsuccessful interactions,358

either deletion or inhibition as in reinforcement models (e.g. Barrett 2006; Franke & Jäger 2012;359

Skyrms 2010) or weakening associations as in the Naming Game (Steels 2012; Steels & Loetzsch360

2012); for further discussion of these mechanisms, see Spike et al. 2017. However, the decision361

about how to implement such mechanisms is not straightforward, especially in the case of sig-362

nals containing errors whereby there is no exactly matching exemplar in either agents’ internal363

representation that could be targeted. An alternative to penalising signals after communication364

has failed is to downweight signals that are more likely to result in failure before an interaction365

takes place, as in the Rational Speech Act (Frank & Goodman 2014; Goodman & Frank 2016); in366

such models, a pragmatic speaker reasons about how likely a listener would be to recover the367

intended meaning from the different utterances available to them. The downside of this kind368

of mechanism is that it requires a significant amount of computation in every communication369

episode, dramatically increasing the runtime of the models. Listener-oriented approaches have370

also been criticised as teleological (e.g. Wedel 2006). In any case, we would argue that either of371

these approaches adds unnecessary complication to the model; selection of successful signals372

works by itself, it simply takes slightly longer to turn over less useful signals.373

Finally, it is true that comprehension does not straightforwardly favour word dissimilar-374

ity, as suggested by our model of reception: specifically, increases in phonotactic probability375

have been found to facilitate word recognition (Vitevitch & Luce 1998). However, pure recog-376

nition — in terms of deciding whether a received stimulus is familiar (word) or unfamiliar377

(non-word) — is very different from the categorisation task faced by our agents, a task where378

competition between multiple activated referents is known to inhibit processing (Luce & Pisoni379

1998). Indeed, Vitevitch and Luce 1998 describe the effect of phonotactic probability as facilita-380

tive for sub-lexical processing (for example, segmenting the speech stream, or processing novel381

sound sequences) and inhibitory for lexical processing (for example, determining the intended382

meaning of a received signal, as in our model). Wedel (2012) also points out that the general383

behaviour of these exemplars models is the same whether similarity biases are encoded once384

(in production) or twice (in production and perception).385

Returning to the frequency effects discussed in Section 2.3.1, our results suggest that fre-386

quency may modulate the rate of lexical evolution, with the effect depending to some extent387
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on the assumptions we make about the processing consequences of frequency. In the most basic388

version of our frequency manipulation, we implicitly assume that production biases are under-389

lyingly frequency-independent. In other words, the model architecture is such that producers390

want to maximise production ease across the board; frequency-dependent lexical evolution391

emerges simply because they can get away with doing so more for high-frequency items. The392

fact that frequency effects are so subtle under this assumption makes sense when we examine393

how frequency actually impacts the two participants in a conversation. From the comprehen-394

der’s side, a frequency advantage is baked into the reception mechanism (Equation 2): the395

stronger mental representation of high-frequency items (due to their larger memory limit) in-396

creases the Receiver’s certainty that a received signal maps onto a target category. However,397

from the producer’s side, any selection which may be acting to change a word’s form is compet-398

ing against the fact that the representation of the word’s existing form is very strong; this may399

also be why, for example, high-frequency irregular items tend to resist regularisation (e.g. By-400

bee 1995; Cuskley et al. 2014; Sims-Williams 2022; Smith et al. 2023; Wu et al. 2019). Therefore,401

while comprehension may permit greater clustering for high-frequency items, the production402

process may be slower to generate the variation required for selection to act upon for these403

items. A stronger effect of frequency can emerge from the model under certain conditions,404

but of course, it may not be desirable to make the additional assumptions required to generate405

this result (Marquet et al. 2014). Future work could expand upon the frequency aspect of our406

model, for example, by using a more realistic distribution of word frequencies (i.e. following a407

power law) rather than treating frequency as a binary value.408

Overall though, our model predicts that production or comprehension pressures in iso-409

lation will give rise to lexicons at one extreme of clustering or the other. An intermediate410

state, with levels of clustering more similar to those found in natural language lexicons, should411

emerge when these pressures are in competition. In the next section, we simulate these same412

pressures in a communication experiment with human participants, focusing more specifically413

on the interaction between clustering and frequency.414

3 Communication experiment415

We use an artificial language learning paradigm to investigate how production and comprehen-416

sion pressures trade-off against each other to influence language users’ lexical choices during417

communication. The experiment is inspired by Kanwal et al. (2017), who showed that Zipf’s418

Law of Abbreviation (Zipf 1949) emerges from precisely such a trade-off. Specifically, in their419

experiment, participants were trained on a miniature lexicon in which two objects that dif-420

fered in frequency were labelled with either a unique, long label (“zopudon” or “zopekil”) or421

a shared (and therefore ambiguous) short label, “zop”. Kanwal et al. found that participants422

favoured the ambiguous short label (which was quicker to produce) under time pressure, and423

the unambiguous long labels under pressure for accuracy. When both of these pressures were424

16



present, participants converged on an optimal solution, whereby the short label was consis-425

tently mapped to the high-frequency object and the long label to the low-frequency object,426

consistent with the Law of Abbreviation. By simulating the pressures inherent to real commu-427

nication, this method provides a convenient way to disentangle the individual effects of op-428

posing pressures, and to show that key structural properties of natural languages can emerge429

from their confluence.430

Following Kanwal et al., rather than relying on participants to introduce changes to the lexi-431

con themselves — i.e. make errors in production — we designed a lexicon incorporating lexical432

variation. However, the competitors in our experiment are words from different phonological433

neighbourhoods, rather than words of different lengths. Specifically, each object was labelled434

by two different words: one from a high-density neighbourhood (highly confusible with words435

belonging to other meanings), and one from a low-density neighbourhood (highly dissimilar436

from all other words in the language). As in Kanwal et al., participants were trained on the437

different names for two objects that differed in frequency, and were then paired up to play a438

communication game, during which we manipulated the presence or absence of a production-439

side pressure for similarity (Stemberger 2004; Vitevitch & Luce 2005; Vitevitch & Sommers440

2003) and a comprehension-side pressure for distinctiveness (Chan & Vitevitch 2009; Luce &441

Pisoni 1998). We predicted that natural-language-like properties would arise only when both442

these pressures were present.443

3.1 Methods444

The study was approved by the PPLS Ethics Committee at the University of Edinburgh (ref.445

6-2425/1) and was pre-registered with the Open Science Foundation (https://osf.io/jucn6).446

3.1.1 Materials447

The meaning space consisted of two objects — a compass and a lightbulb — represented by448

drawings from the MultiPic databank (Duñabeitia et al. 2018). The two drawings score very449

similarly for visual complexity (2.65 and 2.41 respectively, on a scale from 1 to 5). To investigate450

the role of frequency on clustering, one object (randomly chosen for each participant) appeared451

three times more frequently than the other throughout the experiment. The language con-452

sisted of four artificial CVC words: “zun“ [z2n] and “zan“ [zæn] (the high neighbourhood density453

words; henceforth, HND) and “mig“ [mIg] and “tep“ [tEp] (the low neighbourhood density words;454

henceforth, LND). The artificial words are matched for neighbourhood density in English (56455

± 1) according to the CELEX corpus (Baayen et al. 1995) and have average positional phoneme456

probability ranging between 0.0498 and 0.0583 according to the Irvine Phonotactic Online Dic-457

tionary (Vaden et al. 2009). We designed the words in this way to ensure that any preference458

for either HND or LND words would be driven only by their status within the artificial lan-459
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guage, not by their relationship to participants’ native English. Audio files for each word were460

synthesised using an online IPA to Speech tool (https://www.antvaset.com/ipa-to-speech).461

For each participant, each object was randomly assigned two names: one from each neigh-462

bourhood. Unlike in Kanwal et al. 2017, the competitor labels for an object were therefore not463

variants of a single word (e.g. “zopudon” → “zop”), but two completely different words. We464

designed the lexicon in this way to maximise the distance between the LND words: any words465

that were more clearly derived from the HND words would necessarily also be quite similar to466

each other, reducing their distinctiveness.467

3.1.2 Procedure468

The experiment was written in JavaScript using the jsPsych library (de Leeuw et al. 2023).469

The design is based on the paradigm developed by Kanwal et al. (2017). A schematic of the470

experimental design and procedure is given in Figure 6. Participants completed the following471

phases, in the order shown below.472

Training On each training trial, an object was presented on screen alone for 1000ms while473

the audio file of the appropriate word played once. The orthographic form of the word then474

appeared below the image in the English frame ‘This is a . . .‘. After another 1500ms, a ‘next’475

button appeared to let participants advance to the next trial. Participants completed 24 training476

trials: 18 for the frequent object, and 6 for the infrequent object. Each object appeared half the477

time with its HND word and half the time with its LND word. The order of training trials was478

randomised for each participant.479

Pre-test After the training phase, participants were tested on their knowledge of the lan-480

guage. On each trial, participants were presented with a word from the artificial language481

in the English frame ‘Which of these is the . . .?’ and asked to choose between the two objects.482

They received full feedback on their response. Again, participants completed 24 trials, with483

the same distribution over frequent/infrequent meanings and HND/LND words as in train-484

ing. The order of trials was randomised for each participant. Participants were required to485

reach at least 83% accuracy (i.e. ≥ 20 trials correct) to proceed to the interaction phase. Addi-486

tionally, two attention checks were randomly interspersed within this phase. On these trials,487

participants saw a familiar English word in the same ‘Which of these is the . . .?’ frame, along488

with two previously unseen pictures. They received no feedback on their response to these489

trials. Participants were required to pass at least one of these attention checks to proceed to the490

interaction phase.491
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zun x 3 tep x 3

zan x 9 mig x 9

This is a zan

next

Your partner said:

zan

Which of these is

the zan?

Correct!

Choose a word to describe

this object to your partner

zan mig

How often do you think you 

saw the two pictures?

Only 

saw

Only 

saw
Saw 

both 

equally

b) Training trial format

c) Pre-test trial format

d) Interaction trial format

e) Frequency report format

a) Input frequencies

Figure 6: Schematic of the experimental design and procedure. (a) Example training set (the exact permutation
of objects and labels was randomised for each participant) showing the 75/25 frequency distribution over the two
objects (rows) and 50/50 distribution over HND and LND words (columns). (b) Example training trial. (c) Example
pre-test trial. (d) Example interaction trial, proceeding from a Director trial (top) to a Matcher trial (middle) and
then feedback to both participants (bottom). (e) Example frequency report trial.

Interaction The interaction phase of the experiment was managed via a Python WebSockets492

server (based on code from https://kennysmithed.github.io/oels2023/7). At the start of the493

interaction phase, participants were put into a virtual waiting room ready to be paired with the494

next participant who completed the pre-test. An on-screen timer kept participants informed495

of how long they had been waiting. If participants were not paired with a partner within 5496

minutes, they were removed from the waiting room and paid for their time.497

Once participants were paired, they played a communication game. Participants were in-498

structed that they had two goals: to score as many points as possible (i.e. the accuracy pressure499

in Kanwal et al. 2017) and to complete the game as quickly as possible (i.e. the time pressure in500

Kanwal et al. 2017).501

7Full code for the experiment is available at https://osf.io/vsy6z/.
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On each trial, one participant acted as the Director and the other as the Matcher; roles al-502

ternated between every trial. The Director was shown an object and asked to name it for their503

partner. An on-screen stopwatch tracked how long the Director took to complete this task (to504

reinforce the pressure for speed). The Director was always given both object names as op-505

tions, but the method of producing a word differed between conditions, as outlined below.506

The Matcher was shown the word sent by the Director (with or without noise depending on507

condition; see below) and asked to choose which object they thought their partner was describ-508

ing. Both participants received feedback as to whether the Matcher chose the correct object509

(to reiterate the pressure for accuracy). Participants completed 24 trials as Director and 24 as510

Matcher, with the same distribution over frequent/infrequent meanings as in training. The511

order of each participant’s Director trials was randomised. At the end of the interaction phase,512

both participants were shown their pair’s final score and overall completion time.513

To avoid having to ensure that participants were trained on the same version of the input514

language (since the assignment of objects to frequencies and words to objects was randomised515

for each participant), participants’ responses were translated via a shared underlying represen-516

tation before being transmitted, following a similar method to that used by Smith et al. (2024).517

Specifically, if the object being labelled by the Director was the high-frequency object in their518

training set, then the target object (i.e. correct answer) for the Matcher would be whichever ob-519

ject was the high-frequency object in their training set. Similarly, if the Director sent the HND520

word that they were trained on for their target object, then the Matcher would see the HND521

word that they were trained on for their target object (i.e. the object of the same frequency as the522

object seen by the Director). This procedure is illustrated in Figure 7.523

Each pair was randomly assigned to one of the three experimental conditions. There were524

two different versions of the Director and Matcher trials — an easy version, and a more difficult525

version — depending on condition. In the PRODUCTION condition, Director trials were difficult526

but Matcher trials were easy. In the COMPREHENSION condition, it was the other way around:527

Matcher trials were difficult but Director trials were easy. In the critical COMBINED condition,528

both tasks were difficult. Specifically, the manipulations were as follows (also illustrated in529

Figure 8):530

• Easy Director trials: The Director was presented with both word options for the target531

object (in a random order) and simply asked to click on the word they wished to send.532

• Difficult Director trials: The Director was presented with both word options for the tar-533

get object (in a random order) and asked to use a 3x6 on-screen keyboard to type one of534

the words. They were only able to transmit one of the valid words; if they submitted a535

word that didn’t exist in the artificial language, or that referred to the other object, they536

were asked to try again8. The letters required to make an HND word (“z”, “u”, “a” and537

8We included this restriction for two reasons. Firstly, the translation procedure illustrated in Figure 7 would
only work if it was possible to definitively map participants’ responses to categories from the input language. And
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zan x 3 mig x 3

zun x 9 tep x 9

zun x 3 mig x 3

zan x 9 tep x 9

zun

Director

Your partner said:

zan

Matcher

HND

High-

freq

Input language

for Participant 1

Input language

for Participant 2

Figure 7: Example of the procedure for transmitting responses in the interaction phase between two participants
who were trained on a different random permutation of the input language. The Director sees the compass (which
was the high-frequency object in their training set) and sends the word “zun”. This is first translated into an
underlying representation whereby objects are represented by their frequency and words by their neighbourhood,
rather than either being associated with specific forms. This underlying representation is then used to determine
which word form to show the Matcher and which object should be the target; in this case, the lightbulb is the target
object since this was the high-frequency object in the Matcher’s training set, and its associated HND word is “zan”.

“n”) always appeared in the same positions in the centre of the keyboard. The letters538

required to make an LND word (“t”, “e”, “p”, “m”, “i” and “g”), along with six other539

distractor letters that were not used in the artificial language, appeared around the out-540

side of the keyboard and changed positions on every trial. Additionally, the central four541

buttons were three times as large (both in area and in font size) as the outer buttons. In542

this way, HND words were easier to produce than LND words. This design was intended543

to simulate the idea that, in spoken word production, frequently-used phonemes are pro-544

nounced more quickly and accurately, while less frequently-used phonemes present more545

of a moving target for pronunciation (Goldrick & Larson 2008; Goldrick & Rapp 2007;546

Munson 2001; Vitevitch et al. 2004).547

• Easy Matcher trials: Transmission was clean, and the Matcher was presented with the548

full word sent by the Director (after any necessary translation; see above).549

• Difficult Matcher trials: Transmission was noisy, and the Matcher was presented with550

only the first letter of the word sent by the Director (after any necessary translation; see551

above). One letter provided enough information to distinguish between the LND words,552

but this information loss rendered the HND words identical and therefore ambiguous553

secondly, the Matcher in the COMPREHENSION condition would always see a valid word since the Director had no
freedom to invent new forms, so we wanted to ensure that this aspect was parallel across conditions.
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between the two objects. This design was intended to simulate the idea that, in spoken554

word perception, words with many neighbours activate many candidate meanings, and555

are thus more likely to be misinterpreted, while more distinctive words are more likely to556

activate only the target meaning (Chan & Vitevitch 2009; Luce & Pisoni 1998).557

Your partner said zan

Which object do you think your 

partner was describing?

Choose a word to describe

this object to your partner

zan mig

Director

Matcher

Easy Difficult

00:02:7

Use the on-screen keyboard to type a 

word to describe this object to your partner

00:04:2

z

g

n

t

h p z

r o d f

m

k i e

u a n

Oops, we didn’t catch all of that!

Your partner said z _ _

Which object do you think your 

partner was describing?

Figure 8: Easy (left) and more difficult (right) versions of the Director (top) and Matcher (bottom) tasks. When the
tasks are easy, HND and LND words are similarly easy to produce and comprehend. When the tasks are difficult,
there is a production-side pressure in favour of HND words, which are made up of more accessible segments, and
a comprehension-side pressure in favour of LND words, which are able to overcome the noise on transmission.

Frequency report Once participants completed the interaction phase, they were asked to558

complete one final task individually. This task was included as a sense check that participants559

had noticed the frequency imbalance between the two objects. Participants were presented560

with a continuous slider over percentages and asked “How often do you think you saw the561

two pictures? Did you see one more than the other?”. The slider was accompanied by three562

labels: “Only saw Object 1“ at one end, “Saw both objects equally often“ in the middle, and563

“Only saw Object 2“ at the other end. Which object appeared at which end of the slider was564

randomised for every participant.565

3.1.3 Participants and exclusions566

We used Prolific to recruit 220 adults resident in the UK who self-reported that their first lan-567

guage was English and that they had no known language disorders. They were provided568

with a downloadable information sheet and gave informed consent to participate. The experi-569

ment took around 20 minutes to complete in full (median time = 17:46), for which participants570

were paid £3.50 (above UK National Minimum Wage at the time of running the experiment).571

22



Seven participants were prevented from proceeding to the communication game due to low572

accuracy on the pre-test9; these participants were paid a reduced rate of £1.75. 27 participants573

started but failed to complete the interaction phase (either due to technical difficulties during574

the communication game or because they timed-out of the waiting room before being paired575

with a partner); these participants were paid a variable rate depending on how far they had got576

through the experiment. Six participants (one pair in each condition) completed the commu-577

nication game and were paid the full rate, but their data was excluded from analysis because578

their completion time was more than 3 standard deviations above the median in that condi-579

tion. We also pre-registered that we would exclude data from participants who admitted to580

taking written notes in a debrief questionnaire; no participants were excluded on this criterion.581

After all exclusions and dropouts, we were left with 30 pairs in each condition: a total of 180582

individual participants.583

3.1.4 Predictions584

We predicted that participants in the PRODUCTION condition, where HND words were easier585

to produce than LND words, would tend to use the HND word for both objects, regardless586

of frequency. By contrast, we predicted that participants in the COMPREHENSION condition,587

where noisy transmission meant that HND words (but not LND words) became indistinguish-588

able, would tend to use the LND word for both objects, regardless of frequency. We predicted589

that we would observe a natural-language-like frequency trade-off in the critical COMBINED590

condition, where both these pressures were present, such that participants would consistently591

map the frequent object to the HND word and the infrequent object to the LND word. This is592

the optimal strategy by which to minimise production effort (and therefore complete the game593

as quickly as possible) but still maintain an unambiguous one-to-one form-meaning mapping594

(and therefore score as many points as possible).595

3.2 Results596

3.2.1 Confirmatory analysis597

Figure 9 shows the proportion of trials on which each pair used the HND word on Director598

trials, split by object frequency and condition. As predicted, most participants in the COMPRE-599

HENSION condition used the LND word for both objects, while in the PRODUCTION condition,600

most participants used the HND word for both objects. In the critical COMBINED condition,601

where the HND words were considerably easier to produce for the Director but functionally602

ambiguous for the Matcher, participants adopted a range of strategies. Some arrived at the op-603

timal strategy described in Section 3.1.4. However, many were willing to expend extra time and604

effort to use the LND words for both objects and thus ensure accurate communication, while605

9All participants passed both attention checks, so these exclusions were all due to low accuracy on critical trials.
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others opted to use the HND words for both objects and thus minimise transmission time at606

the expense of perfect accuracy.607
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Figure 9: Proportion of trials on which the HND word was used for the high-frequency object vs. the proportion
of trials on which it was used for the low-frequency object. Each data point combines a pair of communicating
players, representing the sum of their Director trial productions. As in Kanwal et al. (2017), only data from the
second half of each pair’s interaction trials is shown, as participants were more likely to have converged on a stable
mapping by this time. Data points in the bottom left quadrant indicate pairs who are mostly using the LND words
for both objects; participants are clustered in this quadrant in the COMPREHENSION condition (left), where only
the LND words are reliably distinguishable and there is no countervailing pressure from production in favour of
the HND words. Data points in the top right quadrant indicate pairs who are mostly using the HND words for
both objects; participants are clustered in this quadrant in the PRODUCTION condition (middle), where HND words
are considerably easier to produce than LND words and there is no countervailing pressure from comprehension
in favour of the LND words. Data points in the bottom right quadrant indicate pairs who are mostly using the
HND word for the frequent object and the LND word for the infrequent object. This behaviour, consistent with
the frequency trade-off seen in natural languages, is numerically most common in the critical COMBINED condition
(right), where both production and comprehension pressures are at play, but a range of other behaviours are also
represented in this condition.

We used the lme4 package (Bates et al. 2015) in R (R Core Team 2024) to fit a logistic mixed608

effects model to the data, with a binary dependent variable of HND word use (as contrasted609

with LND word use, i.e. 1 if the participant produced the HND word, 0 if they produced the610

LND word). The model included fixed effects of experimental condition (treatment-coded with611

the COMPREHENSION condition as the reference level), object frequency (treatment-coded with612

low-frequency as the reference level) and their interaction, and nested by-participant and by-613

pair random intercepts and random slopes for object frequency 10. As in Kanwal et al. (2017),614

only data from the second half of each participant’s Director trials was included in the model, as615

pairs were more likely to have converged on a stable mapping by this time. The model reveals616

that participants in the COMPREHENSION condition were very unlikely to use the HND words617

for either object, while participants in the PRODUCTION condition were very likely to use the618

HND words for both objects. The predicted interaction between condition and frequency was619

not statistically significant, meaning that there is insufficient evidence to conclude that partic-620

ipants in the critical COMBINED condition were displaying a frequency trade-off in their use621

of HND vs. LND words. However, there was a significant main effect of condition, such that622

10Model formula: HND word ∼ condition + frequency + condition:frequency + (frequency |

pair/participant)
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participants in the COMBINED condition were more likely overall to use the HND words than623

participants in the COMPREHENSION condition. A full summary of model coefficients is given624

in Table 1. The model’s predictions for each combination of condition and object frequency are625

shown in Figure 10.626

Table 1: Summary of fixed effects for a logistic mixed effects model with HND word use as the binary dependent
variable, and nested by-participant and by-pair random effects for object frequency. The predicted effects are shown
in bold. Coefficient estimates are on the log-odds scale.

𝛽 SE z p

intercept (object = infrequent, condition = Comprehension) -8.075 1.590 -5.078 <0.001

object = frequent 0.807 1.707 0.473 0.636

condition = Production 14.024 2.526 5.553 <0.001

condition = Combined 3.893 1.434 2.714 <0.01

object = frequent & condition = Production 0.582 2.787 0.209 0.835

object = frequent & condition = Combined 1.689 1.458 1.158 0.247
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Figure 10: Model predictions for each combination of condition and object frequency, generated using the
ggeffects package (Lüdecke 2018). Points represent the predicted probability of producing an HND word; er-
ror bars represent the 95% confidence interval around this value. Although the model predicts that participants in
the critical COMBINED condition were numerically more likely to produce an HND word for the high-frequency
object than the low-frequency object, this interaction between condition and frequency was not statistically signifi-
cant (see Table 1).

3.2.2 Exploratory analysis627

Figure 9 suggests that when only one aspect of the communicative task was difficult, most par-628

ticipants took the same approach to mitigating this difficulty: data points are strongly clustered629

in the bottom-left and top-right corners in the COMPREHENSION and PRODUCTION conditions630

respectively. By contrast, when both aspects of the task were difficult, it is less clear that par-631

ticipants were converging on a single optimal solution: data points are more widely scattered632

around the plot in the COMBINED condition. In particular, there are a number of points towards633
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the centre of the plot (on at least one axis) in this condition, representing pairs who appear to634

be probability matching to the input by using the HND and LND words approximately 50%635

of the time each (for at least one object). However, this method of visualisation disguises some636

underlying differences between the two members of the pair. Specifically, while it is possible637

that a pair at the centre of this plot could consist of two participants probability matching to638

the input, it is equally possible that these points represent pairs where one participant is only639

using the HND words and the other is only using the LND words. Indeed, if we plot individ-640

ual participants instead of collapsing across pairs, we can see that the data tends to move away641

from the centre and towards the corners (Figure 11).642
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Figure 11: By-pair (left) vs. by-participant (right) data for the COMBINED condition. Although it appears that
a number of pairs are producing HND and LND words with roughly equal frequency, it is clear that individual
participants are at least somewhat consistent in their choice of word. This suggests that pairs towards the centre of
the left-hand panel have not converged on a shared language; rather, these pairs probably consist of one participant
who is mostly using the HND words for both objects and one who is mostly using the LND words for both objects.

To further explore this trend, we calculated a convergence score for each pair by comparing643

the languages produced by each member of the pair. Each participant’s output language can be644

fully described by a 2-dimensional vector (HF, LF) where HF is the proportion of trials on which645

the participant used the HND word for the high-frequency object and LF is the proportion of646

trials on which they used the HND word for the low-frequency object. For example, the vector647

(1, 0) captures a language showing the expected frequency trade-off (i.e. in the bottom-right648

corner of the plot). The divergence between two members of a pair is given by the Euclidean649

distance 𝑒 between their output languages. The maximum possible Euclidean distance between650

two 𝑛-dimensional vectors is equal to
√
𝑛 when the input values are bounded between 0 and 1.651

Therefore, the convergence between two members of a pair is given by
√

2 − 𝑒. Figure 12 shows652

the distribution of convergence scores by condition. We fit a linear regression model to this653

data, predicting convergence score as a function of experimental condition (treatment-coded654

with the COMPREHENSION condition as the reference level). The model reveals that within-655

pair convergence was significantly lower in the COMBINED condition (𝛽 = −0.407, SE = 0.107,656
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t = −3.804, p < 0.001), while there was no significant difference between the COMPREHENSION657

and PRODUCTION conditions (𝛽 = −0.073, SE = 0.107, t = −0.682, p = 0.497).658
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Figure 12: Convergence scores by condition. The dashed line indicates the maximum possible score, which is
achieved when both members of a pair produce exactly the same output language. Each coloured point represents
an individual pair. Black points represent the mean over all pairs in that condition; error bars represent boot-
strapped 95% confidence intervals over the mean. Convergence scores are similarly high in the COMPREHENSION
and PRODUCTION conditions, but significantly lower in the COMBINED condition.

Since pairs in the COMBINED condition are often failing to converge on a shared language,659

we might also expect accuracy on Matcher trials to be lower in this condition. Figure 13 shows660

how often the Matcher successfully selected the target object in each condition, depending on661

the object’s frequency and the word used to label it. We fit a logistic mixed effects model to662

this data, predicting accuracy as a function of experimental condition (treatment-coded with663

the COMPREHENSION condition as the reference level), word type (treatment-coded with LND664

as the reference level), object frequency (treatment-coded with low-frequency as the reference665

level), and all two-way and three-way interactions between them. The model also included by-666

participant random intercepts, but failed to converge with random slopes for object frequency667

or nested random intercepts by-participant and by-pair. There was no main effect of being in668

the COMBINED condition (𝛽 = −0.389, SE = 1.120, t = −0.347, p = 0.728). However, the model669

yielded a significant three-way interaction between condition, frequency and word type, such670

that the probability of a correct response was higher in the COMBINED condition when the671

target object was high-frequency and labelled with the HND word (𝛽 = 4.136, SE = 1.607, t672

= 2.574, p < 0.05).673

This three-way interaction could indicate that participants had some expectations of a natural-674

language-like frequency trade-off in comprehension (even if this was not borne out in their675

productions). Specifically, participants were relatively successful at inferring their partner’s in-676

tended meaning when an HND word was used to label the high-frequency object, even though677

the information provided by the word form alone could equally point to either object. Con-678

versely, participants were very unlikely to infer that their partner was referring to the low-679
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Figure 13: Accuracy on Matcher trials by condition, object frequency and word type. Accuracy is high across the
board for LND words, which are always unambiguous. Accuracy for HND words depends both on condition and
object frequency: participants in the COMBINED condition are significantly more likely to successfully infer the
intended meaning of these words when they are used to label the high-frequency object than when they are used
to label the low-frequency object, suggesting that participants in this condition may have some expectations of a
natural-language-like frequency trade-off when interpreting ambiguous signals.

frequency object when they used an HND word. However, it is difficult to determine whether680

this discrepancy only arises in the COMBINED condition because participants in this condition681

understand that there are pressures in favour of both HND and LND words and therefore form682

different expectations about how their partner might be behaving, or because this is the only683

condition where both word types are used frequently enough to observe a difference between684

them. In other words, it may be that accuracy for HND words only appears to be similar across685

the two object frequencies in the COMPREHENSION condition because these words are hardly686

ever used for either object11. If this is the case, then accuracy for HND words in the COMBINED687

condition may simply reflect a strategy of guessing meanings proportional to their frequency688

when the signal is ambiguous (i.e. guess the high-frequency meaning 75% of the time and the689

low-frequency meaning 25% of the time).690

3.3 Experiment discussion691

In our experiment, we found that language users were easily able to adapt their lexical choices692

for efficient communication when only production was difficult or only comprehension was693

difficult. However, the picture was less clear when both of these pressures were present.694

Some participants converged on the efficient natural-language-like solution: mapping easy-695

to-produce but potentially ambiguous words to frequent objects and harder-to-produce but696

easily distinguishable words to infrequent objects. However, other participants apparently pri-697

oritised one pressure over the other, either by using only the unambiguous LND words despite698

their cost in production, or by using only the easily accessible HND words despite their cost699

11Accuracy in the PRODUCTION condition is, unsurprisingly, at ceiling across the board, since the clean transmis-
sion channel in this condition ensures that all words are unambiguous.
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in comprehension. Nonetheless, as in our model, the lexicons that emerged when production700

and comprehension pressures were in competition represented an intermediate state between701

the extreme outcomes observed when only one of these pressures was at play, at least in terms702

of the overall likelihood of producing an HND word.703

Notably, this experiment was designed as a relatively close replication of Kanwal et al.704

(2017). Although the exact production and comprehension pressures we simulate are not iden-705

tical, the net effect of these pressures was very similar: LND words (like long words in Kanwal706

et al.) took longer to produce, and HND words (like short words in Kanwal et al.) were ambigu-707

ous in communication. Despite these parallels, we do not replicate the frequency trade-off that708

arose in Kanwal et al.’s COMBINED condition. In considering why our findings did not robustly709

bear out our predictions, it is worth laying out what might have led to this discrepancy.710

Certainly, the two experiments do differ in a number of important ways. Firstly, the in-711

put languages are quite unalike. The two objects in Kanwal et al.’s experiment shared a short712

name (“zop”) which was derived by clipping their unique long names (“zopekil” and “zop-713

udon”). In this way, there was a clear relationship between an object’s alternative names, and714

the ambiguity of the short name was a property of the lexicon that was evident throughout715

the experiment, including during training. Conversely, the two names for each object in our716

experiment were clearly unrelated, and while the HND words were very similar to each other,717

there was no outright ambiguity in the lexicon: the ambiguity only arose during communi-718

cation as a side-effect of noisy transmission. It may therefore be the case that participants in719

Kanwal et al. were starting to form ideas about how they would deal with the ambiguity ear-720

lier in the experiment, whereas participants in our experiment had insufficient time to explore721

different strategies once they realised that the HND words were functionally ambiguous. In722

fact, it is possible that participants in our experiment didn’t even realise that the HND words723

were ambiguous for their partner; anecdotally, a handful of participants reported on the debrief724

questionnaire that their partner was only sending one-letter responses, suggesting that not all725

participants understood that the noisy transmission was symmetrical and their partner had the726

same kind of comprehension difficulty as themselves. This is an inherently different situation727

from the one in Kanwal et al., where participants knew exactly how much information the728

different labels provided for for their partner. Furthermore, it is likely that participants have729

more explicit awareness and experience of abbreviating frequent words (e.g. “information” →730

“info”) than they do of preferentially selecting between synonyms to maximise ease of pro-731

nunciation, and may be bringing this experience to bear when considering how to solve the732

task.733

Secondly, the manipulation of production effort in Kanwal et al. was perhaps more trans-734

parent than our keyboard task: the time for which participants had to click and hold to send a735

longer word in the former was effectively dead time, whereas participants in our experiment736

were still engaged in the task whilst forming LND words, even if it did take longer. Although737

our manipulation clearly works in the sense that participants in the PRODUCTION condition738
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strongly favoured the easier-to-form HND words, it could still be the case that it is too sub-739

tle when a competing pressure is present. This may also be exacerbated by the fact that the740

pressure for accuracy probably feels inherently stronger for participants than the pressure for741

speed: Prolific participants are highly motivated to complete tasks “correctly” to avoid hav-742

ing their submissions rejected. We tried another version of the experiment which attempted743

to address these first two points (reported in Appendix A), but the effect of frequency was not744

obviously stronger in this follow-up; the most noteable change in participants’ behaviour was745

simply an increased preference in favour of the HND words overall.746

Finally, long words in Kanwal et al. remained consistently arduous throughout the experi-747

ment, since they always took a fixed number of seconds to transmit. On the other hand, partici-748

pants in our experiment may have been able to improve at the keyboard task, thereby reducing749

the cost to produce LND words over time (relative to the cost for their partner by not produc-750

ing them). However, we think this is unlikely to account for much of the variance between the751

two experiments since the letters required to form LND words changed position on every trial,752

so the only thing participants could really learn that would help them produce these words753

on subsequent trials is that they could ignore the centre of the keyboard (which should have754

become obvious almost immediately).755

Nonetheless, our experiment does provide further evidence that neither production pres-756

sures nor comprehension pressures alone give rise to the kind of organisational structure we see757

in real lexicons, in line with Kanwal et al.’s results regarding Zipf’s Law of Abbreviation and758

with the results of our computational model when it comes to word similarity. Furthermore, to759

the extent that there are subtle tendencies towards a natural-language-like frequency trade-off760

when both pressures are present, we would expect these to be amplified through transmis-761

sion to successive generations of participants (Reali & Griffiths 2009; Smith & Wonnacott 2010;762

Thompson et al. 2016).763

4 General discussion764

In this paper, we investigated how pressures operating during individual episodes of com-765

munication might give rise to an emergent structural property of language, whereby lexicons766

tend to be more phonetically clustered than required by their phonotactics, especially for high-767

frequency items.768

In an exemplar-based computational model, we showed that clustering emerges under769

competition between production-side pressures for word similarity and comprehension-side770

pressures for discriminability. The lexicons that arise from this competition are neither as clus-771

tered nor as disperse as they possibly could be, although there is some variance in the exact772

details of how the two pressures are balanced depending on the strength of the comprehender-773

side pressure for distinctiveness and, to a lesser extent, frequency. With only one commu-774
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nicative pressure at work, the resulting lexicons very clearly fall at one extreme or the other.775

Specifically, when producibility is the only pressure, the outcome of repeated communication776

is a lexicon that is extremely easy to produce but communicatively degenerate, in that all words777

sound almost exactly the same. On the other hand, when comprehensibility is the only pres-778

sure, lexicons are maximally expressive in that all words are very distinct, but arduous from a779

production perspective due to the lack of shared sound sequences across words.780

In a communication experiment using an artificial language, we showed that, when ease781

of production is the only pressure shaping participant behaviour, a strong preference emerges782

in favour of words from a high-density neighbourhood, while when ease of comprehension783

is the only pressure, the opposite preference (in favour of words from low-density neighbour-784

hood) emerges. Extrapolating these preferences to an imagined wider lexicon, it is clear that785

our experiment makes the same predictions as our model: production pressures alone would786

be expected to give rise to a highly clustered lexicon, while comprehension pressures alone787

would lead to a highly disperse lexicon. As in the model, an intermediate state emerges when788

these pressures are in competition. Specifically, one neighbourhood does not completely win789

out over the other in this scenario; rather, words from both neighbourhoods have their place.790

However, it is not clear that selection between words from the different neighbourhoods is791

modulated by frequency.792

Putting these two pieces together, our results demonstrate that mechanisms operating dur-793

ing individual episodes of communication can shape the structure of the lexicon. Crucially, we794

show that evolving lexicons balance the influence of competing pressures that pull in different795

directions. However, with respect to the role of frequency, our results are less clear: frequency796

effects were subtle in our model, and do not emerge robustly in our experiment. Clearly, it is797

not possible to make precise predictions from natural language data about what effect sizes we798

would expect in such highly simplified, simulated lexicons. However, it is worth noting that799

the relationship between frequency and clustering in real languages is not necessarily a strong800

one; in fact, it is specifically described as a “weak tendency” by Frauenfelder et al. (1993). Cor-801

relations between frequency and different measures of clustering in Mahowald et al. 2018 were802

generally small, with Pearson’s 𝑟 values deemed as statistically significant starting at 0.08 and803

rarely exceeding 0.3. The relationship between frequency and clustering may also be stronger804

for word beginnings than endings (King & Wedel 2020), or for content words over function805

words (Frauenfelder et al. 1993), factors not considered here. Therefore, we would suggest806

that the subtlety of the frequency effect across our model and experiment may be exactly as807

expected.808

One criticism that might be levelled at our study is that the extreme outcomes that emerge809

under the influence of a single communicative pressure paint a highly unrealistic picture of the810

cognitive biases that shape language. As pointed out by Wasow et al. (2005), if our notion of811

“production effort” includes the effort required to clarify what was intended for a confused812

receiver, then effort would clearly not be minimised by a degenerate language (with only one813
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word for every meaning). However, in the limit, a bias to re-use sound sequences across words814

points to exactly such a language, and we would argue that, all else being equal, producers815

would want their language to conform to this bias. It is exactly because producers have com-816

municative goals that all else is not equal, and a compromise position has to emerge. Similarly,817

it is clearly true that, as comprehenders, we can happily cope with some amount of noise in the818

linguistic signal, because there are plenty of other ways to extract an interlocutor’s intended819

meaning — from contextual cues in the environment to the many multimodal features of lan-820

guage like co-speech gesture and facial expression. Even so, if all language users cared about821

was maximising comprehensibility, there would certainly be no harm in having lexicons be822

as disperse as their phonotactics would allow. It is precisely because comprehensibility is not823

the only thing language users need to worry about that we do not see such lexicons in the824

real world. Whilst acknowledging that these counterfactual either-or situations do not repre-825

sent real language use, it is still useful to examine their consequences in isolation; by doing so,826

we can verify that the phenomena we are trying to explain do in fact result from a trade-off827

between competing pressures, and cannot be more simply explained by one pressure or the828

other.829

Natural language lexicons, as in the critical conditions of our model and experiment, are830

under pressure to adapt to several competing forces. The way in which they achieve an opti-831

mal balance between these pressures is clearly not simple, and depends on several factors. For832

example, biases can vary in strength: in our model, one source of variation was captured by833

the Receiver’s 𝛾 parameter (Section 2.1.3), but there are no doubt others in the real world, such834

as differences in articulatory or auditory apparatus that might make certain sound sequences835

more or less difficult to pronounce for certain individuals (e.g. Franken et al. 2017). In our ex-836

periment, a variety of individual differences may have pushed different participants to arrive837

at different solutions to the task; for example, more risk averse participants may have been838

less willing to sacrifice accuracy for the sake of speed (Carver & White 1994). Nonetheless, the839

lexicons that emerge under competing pressures are, in some sense, efficient (Gibson et al. 2019;840

Jaeger & Tily 2011): words are just distinctive “enough” whilst still being as easy to produce841

“as possible” (where “enough” and “as possible” are defined with reference to a specific com-842

municative or cognitive context). Optimising for producibility inevitably means introducing843

some ambiguity, but as pointed out by Piantadosi et al. (2012), ambiguity is actually a hallmark844

of an efficient communication system since it allows for the reuse of words and sounds that845

are more easily produced, and doesn’t impede communication as long as there are other ways846

for the comprehender to overcome the ambiguity. In our experiment, for example, participants847

could overcome the ambiguity of the HND words during Matcher trials either by adopting a848

very simple heuristic of probability matching their guesses to the relative frequencies of mean-849

ings in the world (since words are, a priori, more likely to refer to things we talk about more),850

or by establishing a shared code with their partner that would allow them to use probabilistic851

information from previous interactions to inform future ones.852
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While our study provides further evidence for the role of competing communicative pres-853

sures in driving language efficiency, our simulation of the pressures acting on language is un-854

doubtedly a simplification in a number of ways. Mostly notably, our experiment simulates the855

pressures involved in language use, rather than relying on them to emerge at scale in the lab.856

Most obviously, typing is not language production in the usual sense, and naturalistic compre-857

hension in not the same as image selection. Replicating this study in a more ecologically valid858

setting (i.e. with oral production and auditory comprehension tasks) is a logical next step for859

a few reasons. First, allowing pressures to emerge naturally could, in principle, provide more860

compelling evidence for a causal link between individual-level behaviour and population-level861

language trends like phonetic clustering. Second, there may be specific aspects of production862

effort that are not well-simulated by anything other than oral production. However, it seems863

likely that the difficulty associated with these tasks would still need to be artificially inflated —864

for example, through the use of highly phonotactically complex words, or environmental noise865

on transmission — to observe, in a brief experiment, the kinds of effects that otherwise accu-866

mulate only over much larger timescales. The benefit of our design is that it allows us to easily867

manipulate task difficulty in a way that affects all participants roughly equally and does not868

depend on, for example, prior experience with pronouncing certain sounds, or auditory acuity.869

By doing so, we can get an idea of how small and potentially noisy effects at an individual-level870

might accumulate into large effects at a population-level (Kirby et al. 2007).871

The present work also does not account for every possible mechanism that could play a role872

in shaping this aspect of lexicon structure. For example, it is possible that clustering emerges873

more strongly from new words entering the lexicon than from changes to or selection between874

existing words. Such a mechanism could also go some way to explaining the frequency effects875

we see in natural languages: if high-frequency words are a stronger attractor for the form876

of new words than low-frequency words, new coinages would tend to increase connectivity877

more in high-frequency components of the lexicon (see Dautriche et al. 2017a for a similar878

suggestion). Future work should investigate how different kinds of lexical evolution — from879

coinage to sound change and, ultimately, obsolescence — might differentially drive changes in880

the network properties of the lexicon.881

Furthermore, neither our model nor our experiment account for the role of learning biases882

in shaping linguistic systems (Christiansen & Chater 2008; Culbertson 2012; Griffiths et al. 2008;883

Kalish et al. 2007; Kirby et al. 2008, 2014; Smith et al. 2003). There are several reasons to think884

that learning might play a role in driving increased clustering. For one, lexicons built from a885

smaller inventory of sound sequences are more compressible (Ferrer-i-Cancho et al. 2013), a886

property which reduces storage demands (Storkel & Maekawa 2005) and allows languages to887

pass more easily through the bottleneck imposed by repeated transmission to naive individuals888

(Kirby et al. 2015). Moreover, infants and children show clear preferences for words composed889

of the highest-frequency sound sequences in their target language (Altvater-Mackensen & Mani890

2013; Jusczyk et al. 1994; Ngon et al. 2013) and generally acquire such words earlier (Coady &891
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Aslin 2004; Gonzalez-Gomez et al. 2013; Storkel 2004). Since early-acquired words are also892

known to be more stably represented within a community’s language (Monaghan 2014), we893

might expect these developmental effects to show up in evolution. However, a learning-based894

account does not straightforwardly point to a clustering advantage (see e.g. Dautriche et al.895

2015; Jones & Brandt 2020; Storkel & Lee 2011; Storkel et al. 2006; Swingley & Aslin 2007).896

Finally, lexicons are not, contrary to the dominant view of “design features” (Hockett 1960),897

entirely arbitrary. Rather, languages are rife with sound symbolism and other systematic as-898

sociations between form and meaning (Bergen 2004; Blasi et al. 2016; Cuskley & Kirby 2013;899

Dautriche et al. 2017b; Dingemanse et al. 2015; Monaghan et al. 2007, 2014; Tamariz 2008). A900

detailed account of the role of semantics is missing from our study, since there is no level of901

analysis below the atomic meaning (e.g. we do not consider the meaning “lightbulb” to have902

any features that might be shared across other meanings, such as being man-made or having to903

do with electricity). However, while correlations between semantic similarity and wordform904

similarity are significantly higher than would be expected by chance, effect sizes are generally905

very small (Dautriche et al. 2017b; Monaghan et al. 2014), so this is unlikely to be the main906

driver of phonetic clustering in natural language lexicons. Another source of non-arbitrariness907

is shared etymology: words that come from the same historical root may consequently sound908

similar in their modern form (Klein 1971). We do not take into account any such structure in909

our models since we use randomly-generated lexicons as the input to the agents. However, we910

would argue that if the phonetic clustering that resulted from shared etymology was detrimen-911

tal for communication, it could be selected out through cultural evolution; the fact that natural912

language lexicons are observably more clustered than they could be suggests that this is not913

the case. Nonetheless, future work could look to incorporate notions of semantic and historic914

relatedness as a more conservative test of our hypotheses. Our model could also be adapted to915

test a variety of different starting conditions.916

5 Conclusion917

Corpus data shows that natural language lexicons are more phonetically clustered than would918

be expected, even accounting for phonotactic rules, morphology and sound symbolism. This919

study provides the first evidence that this organisational property of the lexicon can arise as920

a result of mechanisms operating at the level of individual language users and individual921

communication episodes. Specifically, we show that emergent lexicon structure balances the922

influence of competing functional pressures: a pressure for distinctiveness arising from com-923

prehension, and a pressure for reuse of forms arising from production. When only one of these924

pressures is present, the lexicons that emerge exhibit extreme levels of clustering or disper-925

sion unlike those seen in natural languages. This study adds to a growing body of evidence926

showing that, through a process of cultural evolution, languages are optimised for efficient927

communication.928
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A Follow-up experiment929

As discussed in Section 3.3, there were a number of differences between the design of our930

experiment and the one it was modelled after (Kanwal et al. 2017). In particular, we felt931

that our manipulation of production effort may have been too subtle to push participants932

towards an efficient solution in the presence of a competing pressure for accuracy. We also933

wondered whether the unclear relationship between an object’s two alternative names may934

have changed participants’ representation of the language in a way that could influence their935

behaviour during communication. We therefore ran a follow-up experiment which attempted936

to address these two concerns, while maintaining the general design whereby words from the937

high-density neighbourhood were easier to produce but functionally ambiguous, while words938

from the low-density neighbourhood were harder to produce but easily distinguishable. The939

changes are summarised in Figure A.1 and described below.940

foz x 3 poz x 3

faz x 9 vaz x 9

Change 1: Input lexicons Change 2: Director trials

Use the on-screen keyboard to type a word 

to describe this object to your partner

00:04:2
z

o f

a

Figure A.1: Summary of design changes in the follow-up experiment. Input lexicons were designed such that the
HND words were clearly variants of the LND words, rather than completely different words (left). Director trials
used an on-screen keyboard in which the keys required to form an LND word were faulty — indicated by their
cracked texture and wonky placement — and sometimes produced an incorrect letter (right).

A.1 Materials941

The meaning space consisted of the same two objects in the same frequency distribution as in942

the first experiment. The language consisted of four artificial CVC words: “foz“ [fAz] and “faz“943

[fæz] (the HND words) and “poz“ [pAz] and “vaz“ [væz] (the LND words). Each LND word944

in this lexicon has a corresponding HND word (with which it shares the final two phonemes)945

which is derived by a known process of sound change: /p/ → /f/ (e.g. Foulkes 1997) and946

devoicing as in /v/ → /f/ (e.g. Velde et al. 1996).947

A.2 Procedure948

The procedure was identical as in the first experiment, except for the design of the difficult949

Director trials. On these trials, as before, the Director was presented with both word options950
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for the target object and asked to use an on-screen keyboard to type one of the words. However,951

the keyboard in this experiment contained only letters that were part of the artificial language,952

and all buttons were the same size and appeared in the same position from trial-to-trial (the953

configuration was randomised for each participant). Instead, the two keys required to make an954

LND word (“p” and “v”) were wonky (a random angle of ±10, ±15 or ±20 degrees was chosen955

for each button on each trial), and had a cracked texture around the edge. At the start of each956

trial, a random integer between 1 and 3 was generated, representing the total number of times957

either of these keys would need to be pressed before the correct letter would appear; other958

times, a random letter that wasn’t part of the artificial language would appear. Every time one959

of these keys produced an incorrect letter, participants would need to press an “undo” button960

to get rid of that letter before trying again. Participants were told that some of the buttons961

were faulty and might need to be pressed a few times. As before, this design was intended to962

simulate the observation that less frequently-used phonemes are more error prone; however,963

we hoped that this manipulation would make the LND words more costly from participants’964

perspective than in the first experiment.965

A.3 Participants and exclusions966

Due to financial constraints, we were only able to run the critical COMBINED condition in this967

follow-up experiment. We used Prolific to recruit 72 participants who had not taken part in the968

first experiment. The experiment took around 25 minutes to complete in full (median time =969

22:44) for which participants were paid £4.25. One participant was prevented from proceeding970

to the communication game due to low accuracy on the pre-test and paid a reduced rate of £2.971

13 participants started but failed to complete the interaction phase and were paid a variable972

rate depending on how far they had got through the experiment. Two participants (one pair)973

completed the communication game and were paid the full rate, but their data was excluded974

from analysis because their completion time was more than 3 standard deviations above the975

median. After all exclusions and dropouts, we were left with 28 pairs: a total of 56 individual976

participants.977

A.4 Results978

Figure A.2 shows the proportion of Director trials on which the HND word was used for the979

high and low-frequency objects. As in the first experiment, a range of strategies are repre-980

sented, and it is not clear that most participants are converging on the predicted frequency981

trade-off. We fit a reduced version of the model described in Section 3.2.1; since we only ran982

one condition in this follow-up experiment, there is no longer a fixed effect of condition, nor an983

interaction between condition and frequency. The model had by-participant random intercepts984

and random slopes for object frequency, but failed to converge with the nested by-pair random985

effects structure used in Section 3.2.1. Model predictions are shown in Figure A.3. The model986
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Figure A.2: Proportion of trials on which the HND word was used for the high-frequency object vs. the proportion
of trials on which it was used for the low-frequency object, by-pair (left) and by-participant (right). As in the first
experiment, individual participants are more strongly clustered in the corners than pairs, suggesting that not all
pairs are converging on the same language. As in the first experiment, a range of behaviours are represented, and it
is not clear that a natural-language-like frequency trade-off (bottom right quadrant) is the most common strategy.

reveals a significant main effect of frequency, such that participants were more likely to use987

the HND word to label the high-frequency object (𝛽 = 0.877, SE = 0.392, t = 2.237, p < 0.05).988

This result follows straightforwardly from the fact that there are many more participants below989

than above the diagonal in Figure A.2 i.e. for participants who showed any effect of frequency,990

it was generally the predicted one. In other words, very few participants adopted an anti-991

efficient strategy of using the difficult-to-produce LND word for the high-frequency object and992

the the easy-to-produce HND word for the low-frequency object.993

0.00

0.25

0.50

0.75

1.00

Low−frequency
object

High−frequency
object

P
re

di
ct

ed
 p

ro
ba

bi
lit

y 
of

 p
ro

du
ci

ng
 H

N
D

 w
or

d

Figure A.3: Model predictions generated using the ggeffects package (Lüdecke 2018). The model predicts that
participants were more likely to produce an HND word for the high-frequency object than for the low-frequency
object.

However, if we consider the two experiments as a whole, it seems that the key difference994

between them is not in the strength of the frequency effect. We pooled the data from the COM-995

BINED condition of the first experiment with the data from this follow-up experiment, and996
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fit a mixed effects logistic regression model predicting HND word use as a function of object997

frequency, experiment, and their interaction. Again, the model had by-participant random in-998

tercepts and random slopes for object frequency, but failed to converge with a nested by-pair999

random effects structure. A full summary of model coefficients is given in Table A.1. The1000

model reveals no overall effect of frequency, despite the significant effect of frequency when1001

considering the follow-up experiment in isolation. However, there is also no interaction be-1002

tween frequency and experiment; that is, there is no evidence that either experiment showed a1003

clearer effect of frequency. Crucially, the model does show a significant main effect of experi-1004

ment, such that the overall probability of producing an HND word was higher in the follow-up1005

experiment. In other words, our changes to the experimental design succeeded in making the1006

LND words more costly for participants to produce, but not in such a way that made the pre-1007

dicted frequency trade-off emerge more robustly. Convergence between the two members of1008

a pair (i.e. the extent to which they settled on a shared language) also did not improve in the1009

follow-up experiment (Figure A.4).1010

Table A.1: Summary of fixed effects for a logistic mixed effects model with HND word use as the binary dependent
variable and by-participant random effects for object frequency. The main experiment reported in Section 3 is
labelled as 1a; the follow-up experiment is labelled as 1b. Coefficient estimates are on the log-odds scale.

𝛽 SE z p
intercept (object = infrequent, experiment = 1a) -3.039 0.707 -4.300 <0.001
object = frequent 1.537 0.799 1.923 0.054
experiment = 1b 2.546 0.851 2.993 <0.01
object = frequent & experiment = 1b -0.452 0.944 -0.479 0.632
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Figure A.4: Convergence scores for the COMBINED condition of the main experiment (left) and the follow-up ex-
periment (right). Convergence is very similar between the two experiments.

Overall, the results of this follow-up experiment provide further evidence that, insofar as1011

there is a relationship between frequency and clustering, it may be more subtle than the rela-1012

tionship between frequency and word length probed by Kanwal et al. 2017’s experiment.1013
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