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 A B S T R A C T

Cross-linguistically, lexicons tend to be more phonetically clustered than required by the phonotactics of the 
language; that is, words within a language are more similar to each other than they need to be. In this 
study, we investigate how this property evolves under the influence of competing communicative pressures: 
a production-side pressure to re-use more easily articulated sounds, and a comprehension-side pressure for 
distinctiveness of wordforms. In an exemplar-based computational model and a communication experiment 
using a miniature artificial language, we show that natural-language-like levels of clustering emerge from 
a trade-off between these pressures. With only one pressure at work, the resulting lexicons tend to inhabit 
an extreme region of the possible design space: production pressures alone give rise to maximally clustered 
lexicons, while comprehension pressures alone give rise to maximally disperse lexicons. We also test whether 
clustering emerges more strongly for high-frequency items, but our results lend support only to a weak 
relationship between frequency and clustering. Overall, this study adds to a growing body of evidence showing 
that mechanisms operating at the level of individual language users and individual episodes of communication 
can give rise to emergent structural properties of language.
1. Introduction

Different languages have different rules about how sounds can be 
combined to form words. For example, ‘‘zad’’ is an unattested but pos-
sible word of English, whereas ‘‘zbad’’ is both unattested and impossible 
(but could be a word of Polish). Naturally, the fact that these rules 
differ between languages means that words within a language generally 
sound more similar to each other than they do to words of other 
languages. Indeed, both infants (Jusczyk et al., 1993; Mehler et al., 
1988; Moon et al., 1993) and adults (Lorch & Meara, 1989; Marks et al., 
2003; Stockmal et al., 1996) can discriminate surprisingly well between 
languages, even ones they don’t know.

Perhaps less obvious is the fact that, even within a language, 
possible sounds and sound combinations are not necessarily equally 
frequent. Fig.  1 gives a sense that, while ‘‘zad’’ is a phonotactically 
legal sound sequence in English, it is perhaps not very likely to be 
coined as a new word: the [z] phoneme is relatively uncommon in 
English (especially in word-initial position), and the [zæ] biphone is 
extremely low-frequency. This skewed distribution is not unique to 
English: it is a common property across languages that not all possible 
sounds or sound sequences are equally frequent (Krevitt & Griffith, 
1972; Macklin-Cordes & Round, 2020; Martindale et al., 1996). As a 
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result, words within a language are actually more similar to each other
than they really need to be. In other words, lexicons are phonetically 
clustered.

Naively, we might expect languages to use up their available phono-
tactic space more uniformly; that is, words could be evenly distributed 
in this space to avoid repeating sound sequences where possible. Suc-
cessful communication depends on listeners being able to perceive and 
interpret a speaker’s message with a high degree of accuracy. And since 
communication takes place over a noisy channel (Gibson et al., 2013; 
Levy, 2008; Shannon, 1948), there is always a possibility that informa-
tion will be lost; a lexicon that maximised the distance between words 
would reduce this possibility (Flemming, 2004). Indeed, we know that 
comprehension is easier when words are more distinct: in line with 
the Neighbourhood Activation Model (Luce & Pisoni, 1998), words 
from sparser phonological neighbourhoods and less densely connected 
areas of the lexical network (i.e. words that are less similar to other 
words) are recognised more quickly and accurately, especially in noisy 
conditions (Chan & Vitevitch, 2009; Cluff & Luce, 1990; Goldinger 
et al., 1989; Magnuson et al., 2007; Siew & Vitevitch, 2016; Vitevitch 
& Luce, 1998).
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Fig. 1. Type frequency of all phonemes and biphones of English, derived from the British National Corpus (BNC Consortium, 2007) using List 1.2 (rank frequency 
list for the whole corpus, limited to words with a frequency of at least 100 per million) from Leech et al. (2001), converted to IPA using the eng-to-ipa package 
in Python (https://pypi.org/project/eng-to-ipa/). Yellow bars and arrows indicate the [z] phoneme in the left-hand and middle panels, and the [zæ] biphone in 
the right-hand panel. The specific identity of other phonemes/biphones is not shown on the 𝑥-axis for ease of presentation; there are 36 unique phonemes and 
670 unique biphones represented in the word list. The key observation is that the shape of all these distributions is skewed: certain sounds and sound sequences 
are considerably more frequent than others.
However, the effect of word similarity on comprehension is not com-
pletely straightforward. In particular, increases in phonotactic proba-
bility (which reflects the existence of high-frequency sound sequences 
within a word1) have been found to be beneficial for word recog-
nition (Vitevitch & Luce, 1998, 1999; Vitevitch et al., 1997, 1999). 
Furthermore, there is good evidence that spoken word production is 
facilitated by increases in both neighbourhood density and phonotactic 
probability (Chen & Mirman, 2012; Gahl et al., 2012; Goldrick & 
Larson, 2008; Goldrick & Rapp, 2007; Munson, 2001; Stemberger, 
2004; Vitevitch et al., 2004; Vitevitch & Luce, 1998, 2005; Vitevitch 
& Sommers, 2003). That is, words that are more similar to other words 
are generally pronounced more quickly and accurately.

This suggests that communication involves a complex interplay of 
different functional pressures coming from both production and percep-
tion, and taken together these do not straightforwardly point to an over-
all advantage or disadvantage of word similarity. How might language 
users balance these competing pressures in a way that leads to pho-
netically clustered lexicons? Almost 80 years ago, the linguist George 
Kingsley Zipf claimed that the organisational structure of languages is 
shaped by a trade-off between a pressure for accurate communication 
on the one hand, and a pressure for efficiency on the other (Zipf, 
1949). Although this claim is most famously instantiated in the ‘‘Law 
of Abbreviation’’ — whereby more frequent words tend to be shorter 
— Zipf also argued that languages should preferentially re-use easy-
to-articulate sounds over more difficult sounds (Zipf, 1935). A related 
argument was made by Piantadosi et al. (2012), who suggest that an 
efficient communication system should re-use more easily produced 
words and sounds, even if doing so results in some ambiguity.

Of course, there are several reasons why lexicons might re-use 
particular sounds more than others (as in Fig.  1), not all of which 
point to an adaptive explanation. For example, we would expect certain 
sounds to reoccur across many words in languages with productive 
morphology: unkind, unsatisfying and unpleasant all sound somewhat 
similar because of a shared prefix, while tangled, entangle and disentangle

1 More precisely, phonotactic probability for a given word is usually calcu-
lated by extracting from a corpus the probability with which each phoneme 
(or biphone) occurs — either overall, or in a particular position — across the 
words of the language, and then averaging over all segments in the word. Some 
metrics (e.g. Mayer et al., 2022) instead take the product of the individual 
probabilities, which means that decreases in word length automatically result 
in increased phonotactic probability. Naturally, word length is controlled for in 
all the studies we cite here, such that the increases in phonotactic probability 
we refer to are above and beyond the effect of word length.
2 
all sound extremely similar because of a shared root. Words that sound 
similar may also tend to have similar meanings (Dautriche, Mahowald, 
Gibson, & Piantadosi, 2017; Monaghan et al., 2014) or syntactic func-
tions (Kelly, 1992), although form-meaning correspondences are gener-
ally very subtle; phonaesthemes are a notable exception (Bergen, 2004). 
And many words that map to distinct categories in their modern form 
trace their origins back to a shared ancestor; for example, skirt and shirt
sound similar because they both come from the Old Norse skyrta.

Naturally, phonotactic constraints are also a major source of pho-
netic clustering: sounds and sound sequences that can appear in more 
contexts will be more frequent across a language. Nonetheless, corpus 
analysis reveals a cross-linguistic tendency for lexicons to be even
more clustered than required by the phonotactics of the language 
(Dautriche, Mahowald, Gibson, Christophe, & Piantadosi, 2017). That 
is, the skewed distributions we saw in Fig.  1 are not simply a byproduct 
of phonotactic restrictions in English: these distributions are, in fact,
surprisingly skewed. In particular, across a range of word lengths, high-
frequency words tend to be more tightly clustered — both in terms 
of neighbourhood density and phonotactic probability — while lower 
frequency words tend to be more distinctive (Frauenfelder et al., 1993; 
King & Wedel, 2020; Landauer & Streeter, 1973; Mahowald et al., 2018; 
Meylan & Griffiths, 2024). This pattern is suggestive of adaptation for 
efficient communication (Gibson et al., 2019; Jaeger & Tily, 2011), 
since it minimises production effort for items that are produced most 
often, and maximises understandability for low-frequency items, which 
are often harder to process in comprehension (Brysbaert et al., 2018). 
More generally, the fact that lexicons are observably less disperse 
than they could be suggests that, overall, the advantages associated 
with word similarity outweigh the disadvantages. However, corpus 
data alone cannot provide causal evidence of a relationship between 
particular functional pressures and the structure of language.

In this study, we investigate how production and comprehension 
pressures compete to shape the degree of phonetic clustering in the 
lexicon. First, we set out an agent-based computational model of sound 
change (Section 2). In line with the psycholinguistic evidence reviewed 
above, we model production and comprehension pressures that pull in 
opposite directions. We test the prediction that natural-language-like 
lexicons will emerge only under the combined influence of both. In 
particular, we test whether clustered lexicons emerge, and whether this 
clustering is found particularly for high frequency words. To further 
explore the role of production and comprehension in shaping the 
lexicon, we then model a similar process in a behavioural experiment 
in which human participants communicate with a partner using a 
miniature artificial language (Section 3). To preview our results, the 
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lexicons that emerged from our model when both production and 
comprehension pressures were at play were more clustered than those 
generated by comprehension pressures alone, but more disperse than 
those generated by production pressures alone. Similarly, in the exper-
iment, manipulating the difficulty of only the production task or only 
the comprehension task gave rise to behaviours at one extreme or the 
other. When both tasks were difficult, participants adopted a variety 
of strategies, but overall there was more of a balance between ease of 
production and ease of perception. However, the effect of frequency 
on emergent lexicons was less clear; there was a subtle tendency in 
the model for more frequent words to become more clustered, but this 
pattern did not robustly materialise in the experiment.

2. Computational model

We use an agent-based exemplar model (Nosofsky, 1986; Wedel, 
2006) to test how mechanisms operating during individual episodes of 
production and comprehension might influence the degree of phonetic 
clustering present in a lexicon over time. In this model, pairs of agents 
use a miniature artificial language to communicate with each other 
over repeated rounds. In each communication round, agents take turns 
producing and interpreting signals, with some mechanisms that would 
be expected to favour or disfavour word similarity encoded within these 
processes (described in Section 2.1.3). Signals that result in successful 
communication are strengthened over time, while unsuccessful signals 
are more likely to drop out of the agents’ memory. At the end of 
every round, we observe the state of the lexicon. The following section 
describes all of these components in detail; an overview is given in 
Fig.  2. Readers wishing to skip the technical details can move on to 
Section 2.3 to see the results.

2.1. Details of the model

The model is implemented in Python 3.11; full code is available at 
https://osf.io/vsy6z/.

2.1.1. The agents
Each agent maintains their own independent internal representation 

of the lexicon, based on prior evidence. An agent’s internal representa-
tion consists of 20 atomic meaning categories (represented by integers), 
each associated with a collection of signals. In the most basic version of 
the model, all meanings are equally frequent; we implement a simple 
frequency manipulation in Section 2.3.1. Each meaning category has a 
memory limit 𝑆 (default value = 10) which constrains the number of 
signals that can be associated with it at any given time-point. When a 
new signal needs to be added to a category that is already at this limit, 
a random older signal is deleted first.

Since the model is exemplar-based, there is no abstract represen-
tation for agents to infer from the evidence they receive; rather, they 
store concrete exemplars of linguistic behaviour they’ve observed. As 
in Wedel (2012), we do not intend to make any claims about the 
specific nature of humans’ mental lexicons2; this architecture is simply 
a convenient and transparent way to capture the fact that there is 
always fine-grained phonetic variation below the level of ‘‘the lexicon’’, 
and to show how this variation can provide the fodder for lexical 
evolution (Winter, 2014). More specifically, while we might perceive 
words as having categorical boundaries, in reality, subtle variations in 
pronunciation mean that word boundaries are at least somewhat fuzzy, 
even within the same individual; different exemplars in our model can 
be thought of as representing this fuzziness.

2 The model could equally have been implemented in a Bayesian frame-
work, with a compression-based prior (Kirby et al., 2015) that would favour 
lexicons with fewer unique sounds and sound combinations.
3 
One consequence of this exemplar-based implementation is that it 
is perfectly possible for an agent’s internal representation to contain 
duplicates, because they are quite likely to observe the same signal 
multiple times across the course of interaction. Storing multiple copies 
of a given exemplar effectively corresponds to having higher baseline 
activation for that exemplar; for other methods of implementing acti-
vation, see e.g. Hintzman (1986); Wedel (2012); Wedel and Fatkullin 
(2017).

2.1.2. The lexicon
The ‘‘words’’ agents store in our model are character strings. Be-

cause we are interested in how clustering might emerge above and 
beyond the effects of word length (since shorter words are, necessarily, 
more similar to each other than longer words), word length is a 
constant in our model: all words are of length 8. For simplicity, the 
individual segments that make up a word are represented simply by 
letters, rather than by bundles of features or some other more phoneme-
like representation (cf. Wedel, 2012). Because of this simplification, 
it is not the case that segments can be more or less similar to each 
other: two segments are either identical, or they are different. Although 
this makes comparisons between words less nuanced, it is a reasonable 
simplification to improve model tractability, particularly given the lack 
of evidence that natural language lexicons are more clustered around 
highly distinctive contrasts than around more confusable contrasts 
(Dautriche, Mahowald, Gibson, Christophe, & Piantadosi, 2017).

At the start of each run of the model, we generate 20 words (one 
per meaning category) by randomly combining letters from the set 
of English consonants. Letters are drawn from a uniform distribution, 
meaning that there is no pressure towards clustering coming from the 
initial lexicons. We use these words to seed a process of exemplar 
creation: specifically, the starting set of exemplars in each meaning 
category is a collection of 𝑆 strings (where 𝑆 is the memory limit 
for that category), each of which is created by randomly substituting 
a single character from the seed word assigned to that category. For 
example, if the seed word for a category was ‘‘tam’’, it could generate 
exemplars like ‘‘zam’’, ‘‘tum’’, and ‘‘tak’’.

Although agents therefore store a considerable amount of variation 
in their internal representation, we are treating exemplars as pronun-
ciation variants of the same word, so we want to smooth out this 
within-category variation when we examine the state of the lexicon. To 
collapse an agents’ internal representation down to a single word per 
meaning category — the canonical or ‘average’ form of the word — we 
simply concatenate the most common character in each position across 
all exemplars in that category. For example, given a set of exemplars 
{‘‘miq’’, ‘‘mas’’, ‘‘taq’’, ‘‘maq’’}, this process of concatenation would 
yield the word ‘‘maq’’, since ‘‘m’’ is the most common first letter, ‘‘a’’ 
is the most common second letter, and ‘‘q’’ is the most common final 
letter.

In order to analyse how the lexicon changes over time, and whether 
words are becoming more or less similar to each other, we calculate the
average pairwise edit distance between words at each time step, including 
for the initial lexicon. Average pairwise edit distance, 𝐷(𝐿), is given by: 

𝐷(𝐿) =
∑

𝑖,𝑗∈𝐿,𝑖≠𝑗 𝐿𝐷(𝑖, 𝑗)
|𝐿| ⋅ (|𝐿| − 1)

(1)

where 𝐿 is the lexicon, |...| indicates cardinality (i.e. the number of 
words in 𝐿), 𝑖 and 𝑗 are words and 𝐿𝐷(𝑖, 𝑗) is the Levenshtein distance 
between two words. That is, we calculate the edit distance between 
every pair of words in the lexicon, and then take the mean of these 
distances.

Because we generate the seed words randomly — so that all char-
acters are equally likely to appear in all positions — words in the 
initial lexicon are always very different from each other: across 1000 
randomly generated lexicons, average pairwise edit distance had a 
mean value of 7.54 (𝑆𝐷 = 0.05). In other words, in the initial lexicon, 
any two randomly selected words will usually differ at every position. 
If words are becoming more similar to each other over time, this would 
be reflected by a decrease in average pairwise edit distance.

https://osf.io/vsy6z/
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Fig. 2. Overview of the model architecture for a single communication episode. Both agents maintain an independent internal representation of the lexicon in 
the form of meaning categories (shapes) and associated signals (exemplars, which need not be unique: see Section 2.1.1). The Producer sends a signal to their 
partner to communicate about a target meaning, with two sources of similarity bias in this process. First, exemplars within the target meaning category are 
activated to different degrees depending on their phonotactic probability, meaning that exemplars that are more similar to others in the lexicon are more likely 
to be retrieved. Second, once an exemplar has been retrieved, there is some probability of an error being introduced into it during production; when an error is 
made, segments that are less frequent across the lexicon tend to be replaced by those that are more frequent. The Receiver compares the received signal to their 
stored exemplars to calculate a probability distribution over possible meanings, from which they sample a response; more distinctive signals give higher weight 
on the target meaning category relative to all other categories and are therefore more likely to result in successful communication, while signals that are more 
ambiguous between categories give a more uniform distribution over meanings and are therefore more likely to be misinterpreted. If the Receiver correctly infers 
the Producer’s target meaning, both agents store the signal that was just sent as a new exemplar in that meaning category.
2.1.3. Communication
In each communication round, agents take turns as Producer and 

Receiver for all meanings. The Producer’s task is to transmit a signal 
given a target meaning; the Receiver’s task is to decode the intended 
meaning given a received signal. Whenever the Receiver successfully 
recovers the meaning of a signal, both agents store that signal as a new 
exemplar in the relevant meaning category. Due to the memory limit 
described in Section 2.1.1, exemplars that are either not used or do not 
result in successful communication will tend to drop out of the agents’ 
internal representations over time.
4 
Production. Production consists of two stages: retrieval and articu-
lation. In both of these stages, we build in observations from the 
psycholinguistic literature about how word similarity benefits word 
production. To summarise, exemplars that are more similar to others 
in the agent’s internal representation are retrieved more easily (Chen 
& Mirman, 2012; Goldrick & Larson, 2008; Vitevitch, 2002; Vitevitch 
et al., 2004), and errors in the pronunciation of a target exemplar tend 
to replace lower frequency segments with higher frequency ones (Dell, 
1986; Goldrick & Rapp, 2007; Levitt & Healy, 1985; Motley & Baars, 
1975; Munson, 2001), thus creating sequences with higher phonotactic 
probability.
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More specifically, production begins with the random choice of an 
exemplar from the target meaning category, where the probability of 
a particular choice depends on its phonotactic probability (average bi-
gram positional probabilities across the string); exemplars with higher 
phonotactic probability are more strongly activated (the retrieval bias
parameter). Before the exemplar is transmitted to the Receiver, an 
error is introduced into it with probability 𝐸.3 All errors involve the 
substitution of a single segment in a randomly chosen position. The new 
segment is sampled from the set of segments in the language, where the 
probability of selecting a particular segment depends on the frequency 
with which it occurs in the same context as the original segment 
across all exemplars in the agent’s internal representation (the error bias
parameter). By default, we only consider a single preceding segment 
when calculating conditional segment frequencies; in this way, errors 
tend to create high-probability bigrams. We use Laplace smoothing 
with parameter 0.01 to assign non-zero probability to segments that 
were present in the initial lexicon but have dropped out entirely, 
or segments that don’t appear in a particular bigram. We also allow 
‘‘substitution’’ to replace a segment with itself, which can happen when 
the segment targeted for error is very high-frequency in the given 
position; in this way, exemplars with high phonotactic probability in 
the language become less likely to be mispronounced.
Reception. The final signal created by the Producer, including any 
error, is transmitted to the Receiver along with a context (list of 
possible meanings) which they have to choose from. The nature of 
this context is controlled by a context size parameter, which can take 
one of three values: maximal (the default: all meanings in the lexicon), 
random (𝑛 randomly selected meanings, where 1 ≤ 𝑛 ≤ 20), or minimal 
(= 1).4

When the Receiver hears a signal, they must infer its meaning by 
comparing it to all their stored exemplars for each meaning category 
in the current context. If the context contains only one meaning, the 
Receiver automatically assigns the signal to that meaning category. 
Otherwise, the probability of recovering the intended meaning is cal-
culated using the Generalised Context Model (Nosofsky, 1986, 2011),5 
which states that the probability of classifying stimulus 𝑖 into category 
𝑐𝑛 is given by: 

𝑃 (𝑐𝑛|𝑖) =

[

∑

𝑗∈𝑐𝑛 𝑁𝑗 ⋅ 𝜂𝑖𝑗
]𝛾

∑

𝑐∈𝐶
[
∑

𝑘∈𝑐 𝑁𝑘 ⋅ 𝜂𝑖𝑘
]𝛾 (2)

where 𝜂𝑖𝑗 denotes the similarity between exemplars 𝑖 and 𝑗 and 𝑁𝑗 is 
the frequency of exemplar 𝑗. The numerator is therefore simply the 
summed similarity score for the meaning category under consideration, 
and the denominator is the sum of all similarity scores for all mean-
ing categories. 𝛾 is a response-scaling parameter which controls the 
Receiver’s sampling behaviour: when 𝛾 = 1, the Receiver responds by 
sampling directly from the distribution of relative summed similarities 

3 In the simulations presented below, we use an unrealistically high 𝐸 of 
0.5, which would imply that language users mispronounce words around half 
the time. Using a larger 𝐸 does not qualitatively change the results compared 
to a smaller 𝐸, but does allow effects to be seen in fewer time steps, which 
improves runtime. In any case, the function of the error mechanism is to 
introduce variation that can provide the fodder for lexical evolution; similar 
mechanisms in related models often apply to every production (e.g. Flego, 
2022; Wedel, 2012; Wedel & Fatkullin, 2017).

4 Using the minimal context size removes comprehension pressures from the 
equation entirely, since the Receiver has access to full information about the 
Producer’s intended meaning, rendering their task trivial. A real-life analogue 
would be an utterance that takes place in a situation where there is only one 
salient possible interpretation. In our case, where communication is essentially 
just a process of object labelling, it could also be thought of as a Producer 
pointing at their intended referent.

5 We exclude the category bias term used in the Generalised Context Model, 
since we want all categories to be equally likely a priori.
5 
over all categories (i.e. probability matching), whereas for higher val-
ues of 𝛾, the Receiver responds more deterministically with the category 
that yields the largest summed similarity. Similarity between exemplars 
𝑖 and 𝑗 is itself operationalised as the complement of the Levenshtein 
distance 𝐿𝐷 between the two strings, normalised by dividing by 𝑀 , the 
length of the longer string6: 

𝜂𝑖𝑗 = 1 −
𝐿𝐷(𝑖, 𝑗)

𝑀
(3)

The Receiver samples a meaning from the context using the relative 
similarity scores given by Eq.  (2) as weights. The effect of this reception 
mechanism is that more distinctive signals will be more likely to result 
in successful communication, since they will give higher weight on 
the target meaning category relative to all other categories. On the 
other hand, signals that are similar to exemplars in multiple categories 
will give a more uniform distribution over possible meanings, and are 
therefore more likely to be misinterpreted.

2.1.4. Iteration
At the end of every communication round, we extract the current 

state of the lexicon from one of the agents (randomly chosen) and cal-
culate its average pairwise edit distance, 𝐷(𝐿). A new communication 
round then starts; each run of the model consists of 4000 such rounds. 
Note that there is no transmission of the language to naive individuals 
between communication rounds (cf. Kirby et al., 2015); the same pair 
of agents continue to communicate with each other throughout the 
simulation. Since there are no learning biases in this model, the only 
purpose of including naive agents would be to introduce a source of 
random drift, which is already provided by limiting our agents’ memory 
capacity (Spike et al., 2013).7

2.2. Simulations

We use the model to run simulations in three conditions:

• Production pressures only: Both the retrieval bias and error 
bias parameters are switched on, but context size is set to mini-
mal, such that there is no inference on the Receiver’s part and 
communication is always successful.

• Comprehension pressures only: Context size is set to maximal, 
requiring the Receiver to compare received signals to exemplars 
in all possible meaning categories to determine the Producer’s 
intended meaning. However, both the retrieval bias and error bias
parameters are switched off: all exemplars have equal probability 
of being retrieved for production, and errors simply replace one 
random segment with another random segment.

• Competing pressures: Both the retrieval bias and error bias pa-
rameters are switched on, and context size is set to maximal.

For the latter two conditions, we also test a range of different values 
for the Receiver’s 𝛾 parameter (which influences how deterministically 
they choose the meaning category that best fits the received signal). For 
each configuration of parameter settings, we run 10 simulations — each 
with a different random input lexicon and set of starting exemplars.

6 𝑀 is a constant in this case, since all words in our model are the same 
length.

7 Here by ‘‘random drift’’, we mean random fluctuations in the pool of 
available exemplars. In our model, random deletion of an older exemplar upon 
storage of a new one means that the relative proportions of competing word 
variants will fluctuate throughout a simulation; variants that are represented 
by very few exemplars can even be lost entirely. In the case of vertical trans-
mission to naive agents, any acquisition process which includes an element 
of random sampling can similarly lead some variants to be lost. Spike et al. 
(2013) showed that these two approaches are functionally equivalent.



A. Keogh et al. Cognition 267 (2026) 106372 
Fig. 3. Average pairwise edit distance over 4000 communication rounds in three conditions; lower numbers mean that words are more similar to each other. 
Bold lines represent the mean across 10 runs; shaded areas around these lines represent ±1 standard deviation. Colours in the two right-hand plots represent 
different values of the Receiver’s 𝛾 parameter, which controls the strength of the comprehension-side pressure for distinctiveness; higher values correspond to 
a weaker distinctiveness pressure. With production pressures alone, lexicons rapidly degenerate. With comprehension pressures alone, lexicons remain in their 
starting state, where words are all very different from each other. Only with competition between production and comprehension pressures does an intermediate 
state emerge, in which lexicons become somewhat more clustered but ultimately stabilise.
2.3. Results

Recall that the measure of similarity we use here is average pairwise 
edit distance, 𝐷(𝐿). When average pairwise edit distance is lower, it 
mean that words are more similar to each other. Fig.  3 shows the 
change in average pairwise edit distance over time in three conditions. 
When only production pressures are present, the Producer’s similarity 
biases completely take over: lexicons become rapidly more clustered, 
often to the point of degeneracy (Kirby et al., 2015), where there 
is just one word for every meaning (𝐷(𝐿) = 0). Conversely, when 
comprehensibility is the only pressure on the language, lexicons remain 
very disperse over time.

When there is competition between similarity biases in production 
and the pressure for distinctiveness arising from communication, the 
result is a more balanced lexicon: words are somewhat more clustered 
together, but not to such an extreme degree (i.e. degeneracy) as in the 
production-only condition. The speed with which clustering increases 
depends on the strength of the comprehension-side pressure for distinc-
tiveness, controlled by the Receiver’s 𝛾 parameter: when 𝛾 is higher, the 
pressure for distinctiveness is weaker, which allows lexicons to change 
more rapidly. However, the curve eventually flattens out; this plateau 
can be thought of as the state in which words are as similar to each 
other as they can be whilst still allowing the Receiver to tell them apart 
with a reasonable level of accuracy.

Overall then, when we allow lexicons to be shaped by only one 
aspect of communication, the results are extreme and bear little re-
semblance to natural languages. Words either become so similar that 
they cannot be distinguished at all (production-only), or they remain 
totally dispersed (comprehension-only). It is only when both pressures 
are present — as they are in real communication — that a middle 
ground emerges.

2.3.1. Adding frequency effects
As described in Section 1, the degree of clustering is not the same 

across all parts of natural language lexicons: more frequent words 
tend to be more similar to each other, while lower frequency words 
tend to be more distinctive (Frauenfelder et al., 1993; King & Wedel, 
2020; Landauer & Streeter, 1973; Mahowald et al., 2018; Meylan & 
Griffiths, 2024). In the model results described above this effect is 
of course not observable, since all meanings were equally frequent. 
Next, we incorporate a simple notion of frequency to test whether the 
effect of frequency emerges from the model. Specifically, we assign 
5 meanings to a high-frequency group, and the other 15 to a low-
frequency group. During each round, agents communicate about the 
6 
high-frequency meanings three times as often as the low-frequency 
meanings (three trials per agent per high-frequency meaning, versus 
one for the low-frequency meanings). Additionally, we increase agents’ 
memory limit for high-frequency meanings to 30 (the memory limit 
for low-frequency meanings stays at 10) to capture the fact that high-
frequency lexical items have stronger mental representations than their 
low-frequency counterparts (Alexandrov et al., 2011; Popov & Reder, 
2020; see also the multiple-trace hypothesis: Hintzman & Block, 1971). 
The rest of the model architecture is identical.

Fig.  4 shows the change in average pairwise edit distance over 
time in the same three conditions as above, now additionally split 
by frequency. The results for the first two configurations look very 
similar as in Fig.  3, with no difference between frequent and infrequent 
words: lexicons remain in their starting state in the comprehension-only 
condition, and rapidly degenerate in the production-only condition. 
However, crucially, when production and comprehension pressures are 
in competition, there is a very subtle effect of frequency. Specifically, 
clustering increases slightly more on average in the high-frequency 
component of the lexicon, but only when the Receiver’s 𝛾 parameter 
is low; this suggests that the benefits conferred by increased frequency 
(due to having a stronger mental representation for higher frequency 
items) are washed out when the Receiver is already very proficient at 
telling words apart.

The effect of frequency becomes more apparent if we make two 
further modifications to the model architecture. First, we can modulate 
the strength of the producer biases such that they are stronger for 
higher frequency words. For example, in the case of word length, there 
is good evidence that speakers preferentially shorten high-frequency 
words (e.g. Bybee, 2002; Kanwal et al., 2017; Mahowald et al., 2013; 
Pierrehumbert, 2001). We can encode a similar preference to maximise 
ease-of-production for high-frequency items in our model by raising 
the activation values given by the Producer’s retrieval bias parameter 
(described in Section 2.1.3) to the power of 2 when they are labelling 
a high-frequency meaning. This has the effect of exaggerating the pref-
erence for exemplars with high phonotactic probability. Second, we can 
treat high-frequency words as requiring less inference by the Receiver. 
The logic here is that high-frequency meanings will be weighted more 
highly a priori, so if a received signal is a good fit to a high-frequency 
category, the Receiver might not consider as many alternatives (note 
also that high-frequency words attract more attention early in pro-
cessing: Dahan et al., 2001). We can operationalise this intuition by 
manipulating the context size parameter (described in Section 2.1.3): for 
high-frequency items, the Receiver only has to choose between 5 candi-
date meanings, while for low-frequency items, there are 15 candidate 
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Fig. 4. Average pairwise edit distance for the high and low-frequency components of the lexicon over 4000 communication rounds. With only production pressures, 
lexicons rapidly degenerate, with no difference between frequent and infrequent words. With only comprehension pressures, both high and low-frequency words 
remain very distinct over time. When both production and comprehension pressures are present, a very subtle effect of frequency emerges: the high-frequency 
component of the lexicon becomes slightly more clustered than the low-frequency component, but only when the Receiver’s 𝛾 parameter is low (top).
Fig. 5. Average pairwise edit distance for the high and low-frequency components of the lexicon when production and comprehension pressures are in competition, 
with two additional modifications to the model architecture: (1) Producer biases are stronger for high-frequency items, and (2) high-frequency items are more 
predictable for the Receiver. In this configuration, an effect of frequency is evident when the Receiver’s 𝛾 parameter is low (left), but still does not emerge for 
higher values of 𝛾 (right).
meanings. Fig.  5 shows the results of this model configuration when 
production and comprehension pressures are in competition.8 Here, 
the effect of frequency is much clearer: the high-frequency component 
of the lexicon becomes more clustered more quickly than the low-
frequency component. However, again, this effect is only observable 
for lower values of the Receiver’s 𝛾 parameter.

2.4. Model discussion

Our model shows that phonetic clustering — a robust property 
of natural language lexicons — can emerge from initially random 

8 We only show this condition here since we have already established that 
there is no effect of frequency in the other two conditions.
7 
languages during repeated episodes of communication. Specifically, 
moderately-clustered lexicons emerge when there is competition be-
tween production pressures (which favour greater similarity between 
words) on the one hand, and comprehension pressures (which favour 
greater distinctiveness) on the other. With just one or other of these 
pressures, lexicons tend to fall within an extreme region of the possible 
design space: under the influence of production pressures alone, lexi-
cons degenerate to the point of being communicatively useless, while 
when comprehension is the only pressure, lexicons remain in their 
initial, maximally disperse state.

Although models are always a simplification of the system they 
are designed to study, it is worth revisiting the specific simplifying 
assumptions we have made here. Firstly, as described in Section 2.1.2, 
we do not use a feature-based representation of the segments within a 
word, unlike in some similar models (e.g. Wedel, 2012). Such a model 
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architecture would probably improve the Receiver’s performance, by 
allowing them to make more sophisticated comparisons between a 
received signal and their stored exemplars. However, since such fine-
grained patterns of similarity do not feature in the calculations of 
phonotactic probability and bigram frequency that drive the Producer’s 
behaviour, we do not think there would be significant downstream 
consequences for the eventual outcome of the model. Rather, clustering 
would likely just emerge faster since greater success on the Receiver’s 
part results in more frequent storage of new exemplars and quicker 
turnover of old exemplars. In any case, corpus analysis suggests that 
a feature-based representation is unnecessary to explain the degree of 
clustering in natural language lexicons (Dautriche, Mahowald, Gibson, 
Christophe, & Piantadosi, 2017), which is the basis on which we made 
this simplification.

Furthermore, whilst successful communication changes the agents’ 
internal representation, there is no such feedback loop from unsuccess-
ful communication in the model. This is a common feature of exemplar 
models in this tradition (e.g. Wedel, 2012; Wedel & Fatkullin, 2017), 
since there is no penalty on unsuccessful signals (beyond not being 
stored in the target category) encoded within the Generalised Context 
Model of signal reception (Nosofsky, 1986, 2011). However, other 
frameworks exist that could capture the intuition that language users 
might try not to use variants that they do not believe to be communica-
tively useful. For example, various types of models employ some kind 
of negative feedback after unsuccessful interactions, either deletion or 
inhibition as in reinforcement models (e.g. Barrett, 2006; Franke & 
Jäger, 2012; Skyrms, 2010) or weakening associations as in the Naming 
Game (Steels, 2012; Steels & Loetzsch, 2012); for further discussion of 
these mechanisms, see Spike et al. (2017). However, the decision about 
how to implement such mechanisms is not straightforward, especially 
in the case of signals containing errors whereby there is no exactly 
matching exemplar in either agents’ internal representation that could 
be targeted. An alternative to penalising signals after communication 
has failed is to downweight signals that are more likely to result in 
failure before an interaction takes place, as in the Rational Speech Act 
(Frank & Goodman, 2014; Goodman & Frank, 2016); in such models, 
a pragmatic speaker reasons about how likely a listener would be to 
recover the intended meaning from the different utterances available 
to them. The downside of this kind of mechanism is that it requires 
a significant amount of computation in every communication episode, 
dramatically increasing the runtime of the models. Listener-oriented 
approaches have also been criticised as teleological (e.g. Wedel, 2006). 
In any case, we would argue that either of these approaches adds 
unnecessary complication to the model; selection of successful signals 
works by itself, it simply takes slightly longer to turn over less useful 
signals.

Finally, it is true that comprehension does not straightforwardly 
favour word dissimilarity, as suggested by our model of reception: 
specifically, increases in phonotactic probability have been found to 
facilitate word recognition (Vitevitch & Luce, 1998). However, pure 
recognition — in terms of deciding whether a received stimulus is 
familiar (word) or unfamiliar (non-word) — is very different from the 
categorisation task faced by our agents, a task where competition be-
tween multiple activated referents is known to inhibit processing (Luce 
& Pisoni, 1998). Indeed, Vitevitch and Luce (1998) describe the effect 
of phonotactic probability as facilitative for sub-lexical processing (for 
example, segmenting the speech stream, or processing novel sound 
sequences) and inhibitory for lexical processing (for example, determin-
ing the intended meaning of a received signal, as in our model). Wedel 
(2012) also points out that the general behaviour of these exemplars 
models is the same whether similarity biases are encoded once (in 
production) or twice (in production and perception).

Returning to the frequency effects discussed in Section 2.3.1, our 
results suggest that frequency may modulate the rate of lexical evolu-
tion, with the effect depending to some extent on the assumptions we 
make about the processing consequences of frequency. In the most basic 
8 
version of our frequency manipulation, we implicitly assume that pro-
duction biases are underlyingly frequency-independent. In other words, 
the model architecture is such that producers want to maximise pro-
duction ease across the board; frequency-dependent lexical evolution 
emerges simply because they can get away with doing so more for high-
frequency items. The fact that frequency effects are so subtle under this 
assumption makes sense when we examine how frequency actually im-
pacts the two participants in a conversation. From the comprehender’s 
side, a frequency advantage is baked into the reception mechanism 
(Eq.  (2)): the stronger mental representation of high-frequency items 
(due to their larger memory limit) increases the Receiver’s certainty 
that a received signal maps onto a target category. However, from the 
producer’s side, any selection which may be acting to change a word’s 
form is competing against the fact that the representation of the word’s 
existing form is very strong; this may also be why, for example, high-
frequency irregular items tend to resist regularisation (e.g. Bybee, 1995; 
Cuskley et al., 2014; Sims-Williams, 2022; Smith et al., 2023; Wu et al., 
2019). Therefore, while comprehension may permit greater clustering 
for high-frequency items, the production process may be slower to 
generate the variation required for selection to act upon for these items. 
A stronger effect of frequency can emerge from the model under certain 
conditions, but of course, it may not be desirable to make the additional 
assumptions required to generate this result (Marquet et al., 2014). 
Future work could expand upon the frequency aspect of our model, 
for example, by using a more realistic distribution of word frequencies 
(i.e. following a power law) rather than treating frequency as a binary 
value.

Overall though, our model predicts that production or comprehen-
sion pressures in isolation will give rise to lexicons at one extreme of 
clustering or the other. An intermediate state, with levels of cluster-
ing more similar to those found in natural language lexicons, should 
emerge when these pressures are in competition. In the next section, 
we simulate these same pressures in a communication experiment 
with human participants, focusing more specifically on the interaction 
between clustering and frequency.

3. Communication experiment

We use an artificial language learning paradigm to investigate how 
production and comprehension pressures trade-off against each other 
to influence language users’ lexical choices during communication. The 
experiment is inspired by Kanwal et al. (2017), who showed that Zipf’s 
Law of Abbreviation (Zipf, 1949) emerges from precisely such a trade-
off. Specifically, in their experiment, participants were trained on a 
miniature lexicon in which two objects that differed in frequency were 
labelled with either a unique, long label (‘‘zopudon’’ or ‘‘zopekil’’) or 
a shared (and therefore ambiguous) short label, ‘‘zop’’. Kanwal et al. 
found that participants favoured the ambiguous short label (which was 
quicker to produce) under time pressure, and the unambiguous long 
labels under pressure for accuracy. When both of these pressures were 
present, participants converged on an optimal solution, whereby the 
short label was consistently mapped to the high-frequency object and 
the long label to the low-frequency object, consistent with the Law 
of Abbreviation. By simulating the pressures inherent to real commu-
nication, this method provides a convenient way to disentangle the 
individual effects of opposing pressures, and to show that key structural 
properties of natural languages can emerge from their confluence.

Following Kanwal et al., rather than relying on participants to 
introduce changes to the lexicon themselves — i.e. make errors in 
production — we designed a lexicon incorporating lexical variation. 
However, the competitors in our experiment are words from different 
phonological neighbourhoods, rather than words of different lengths. 
Specifically, each object was labelled by two different words: one from 
a high-density neighbourhood (highly confusible with words belonging 
to other meanings), and one from a low-density neighbourhood (highly 
dissimilar from all other words in the language). As in Kanwal et al., 
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participants were trained on the different names for two objects that 
differed in frequency, and were then paired up to play a communication 
game, during which we manipulated the presence or absence of a 
production-side pressure for similarity (Stemberger, 2004; Vitevitch & 
Luce, 2005; Vitevitch & Sommers, 2003) and a comprehension-side 
pressure for distinctiveness (Chan & Vitevitch, 2009; Luce & Pisoni, 
1998). We predicted that natural-language-like properties would arise 
only when both these pressures were present.

3.1. Methods

The study was approved by the PPLS Ethics Committee at the 
University of Edinburgh and was pre-registered with the Open Science 
Foundation (https://osf.io/jucn6).

3.1.1. Materials
The meaning space consisted of two objects — a compass and 

a lightbulb — represented by drawings from the MultiPic databank 
(Duñabeitia et al., 2018). The two drawings score very similarly for 
visual complexity (2.65 and 2.41 respectively, on a scale from 1 to 5). 
To investigate the role of frequency on clustering, one object (randomly 
chosen for each participant) appeared three times more frequently than 
the other throughout the experiment. The language consisted of four 
artificial CVC words: ‘‘zun’’ [z2n] and ‘‘zan’’ [zæn] (the high neighbour-
hood density words; henceforth, HND) and ‘‘mig’’ [mIg] and ‘‘tep’’ [tEp] 
(the low neighbourhood density words; henceforth, LND). The artificial 
words are matched for neighbourhood density in English (56 ± 1) 
according to the CELEX corpus (Baayen et al., 1995) and have average 
positional phoneme probability ranging between 0.0498 and 0.0583 
according to the Irvine Phonotactic Online Dictionary (Vaden et al., 
2009). We designed the words in this way to ensure that any preference 
for either HND or LND words would be driven only by their status 
within the artificial language, not by their relationship to participants’ 
native English. Audio files for each word were synthesised using an 
online IPA to Speech tool (https://www.antvaset.com/ipa-to-speech). 
For each participant, each object was randomly assigned two names: 
one from each neighbourhood. Unlike in Kanwal et al. (2017), the com-
petitor labels for an object were therefore not variants of a single word 
(e.g. ‘‘zopudon’’ → ‘‘zop’’), but two completely different words. We 
designed the lexicon in this way to maximise the distance between the 
LND words: any words that were more clearly derived from the HND 
words would necessarily also be quite similar to each other, reducing 
their distinctiveness. Finally, to ensure that every possible object–word 
mapping was phonotactically equivalent, the language was designed 
such that neighbourhood membership precisely determines a word’s 
relationship with every other word in the lexicon. Concretely, HND 
words have one neighbour each (the other HND word) and average 
edit distance of 2.33 from any other word (edit distance between the 
two HND words is 1; edit distance between either HND word and either 
LND word is 3). LND words, meanwhile, have no neighbours, and edit 
distance of exactly 3 from every other word.

3.1.2. Procedure
The experiment was written in JavaScript using the jsPsych library 

(de Leeuw et al., 2023). The design is based on the paradigm developed 
by Kanwal et al. (2017). A schematic of the experimental design and 
procedure is given in Fig.  6. Participants completed the following 
phases, in the order shown below.
Training. On each training trial, an object was presented on screen 
alone for 1000 ms while the audio file of the appropriate word played 
once. The orthographic form of the word then appeared below the 
image in the English frame ‘This is a …‘. After another 1500 ms, a 
‘next’ button appeared to let participants advance to the next trial. 
Participants completed 24 training trials: 18 for the frequent object, and 
6 for the infrequent object. Each object appeared half the time with its 
HND word and half the time with its LND word. The order of training 
trials was randomised for each participant.
9 
Pre-test. After the training phase, participants were tested on their 
knowledge of the language. On each trial, participants were presented 
with a word from the artificial language in the English frame ‘Which 
of these is the …?’ and asked to choose between the two objects. They 
received full feedback on their response. Again, participants completed 
24 trials, with the same distribution over frequent/infrequent meanings 
and HND/LND words as in training. The order of trials was randomised 
for each participant. Participants were required to reach at least 83% 
accuracy (i.e. ≥ 20 trials correct) to proceed to the interaction phase. 
Additionally, two attention checks were randomly interspersed within 
this phase. On these trials, participants saw a familiar English word in 
the same ‘Which of these is the …?’ frame, along with two previously 
unseen pictures. They received no feedback on their response to these 
trials. Participants were required to pass at least one of these attention 
checks to proceed to the interaction phase.
Interaction. The interaction phase of the experiment was managed via a 
Python WebSockets server (based on code from https://kennysmithed.
github.io/oels2023/).9 At the start of the interaction phase, participants 
were put into a virtual waiting room ready to be paired with the next 
participant who completed the pre-test. An on-screen timer kept par-
ticipants informed of how long they had been waiting. If participants 
were not paired with a partner within 5 min, they were removed from 
the waiting room and paid for their time.

Once participants were paired, they played a communication game. 
Participants were instructed that they had two goals: to score as many 
points as possible (i.e. the accuracy pressure in Kanwal et al., 2017) 
and to complete the game as quickly as possible (i.e. the time pressure 
in Kanwal et al., 2017).

On each trial, one participant acted as the Director and the other 
as the Matcher; roles alternated between every trial. The Director 
was shown an object and asked to name it for their partner. An on-
screen stopwatch tracked how long the Director took to complete this 
task (to reinforce the pressure for speed). The Director was always 
given both object names as options, but the method of producing a 
word differed between conditions, as outlined below. The Matcher was 
shown the word sent by the Director (with or without noise depending 
on condition; see below) and asked to choose which object they thought 
their partner was describing. Both participants received feedback as 
to whether the Matcher chose the correct object (to reiterate the 
pressure for accuracy). Participants completed 24 trials as Director and 
24 as Matcher, with the same distribution over frequent/infrequent 
meanings as in training. The order of each participant’s Director trials 
was randomised. At the end of the interaction phase, both participants 
were shown their pair’s final score and overall completion time.

To avoid having to ensure that participants were trained on the 
same version of the input language (since the assignment of objects to 
frequencies and words to objects was randomised for each participant), 
participants’ responses were translated via a shared underlying repre-
sentation before being transmitted, following a similar method to that 
used by Smith et al., 2025. Specifically, if the object being labelled by 
the Director was the high-frequency object in their training set, then the 
target object (i.e. correct answer) for the Matcher would be whichever 
object was the high-frequency object in their training set. Similarly, if 
the Director sent the HND word that they were trained on for their 
target object, then the Matcher would see the HND word that they were 
trained on for their target object (i.e. the object of the same frequency 
as the object seen by the Director). This procedure is illustrated in Fig. 
7. Importantly, because of the way the artificial language was designed, 
this translation procedure never resulted in the Matcher seeing a word 
that had different phonotactic properties (with respect to the rest of the 
lexicon) than the one the Director had sent: see Section 3.1.1.

Each pair was randomly assigned to one of the three experimental 
conditions. There were two different versions of the Director and 

9 Full code for the experiment is available at https://osf.io/vsy6z/.

https://osf.io/jucn6
https://www.antvaset.com/ipa-to-speech
https://kennysmithed.github.io/oels2023/
https://kennysmithed.github.io/oels2023/
https://kennysmithed.github.io/oels2023/
https://osf.io/vsy6z/
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Fig. 6. Schematic of the experimental design and procedure. (a) Example training set (the exact permutation of objects and labels was randomised for each 
participant) showing the 75/25 frequency distribution over the two objects (rows) and 50/50 distribution over HND and LND words (columns). (b) Example 
training trial. (c) Example pre-test trial. (d) Example interaction trial, proceeding from a Director trial (top) to a Matcher trial (middle) and then feedback to 
both participants (bottom). (e) Example frequency report trial.
Matcher trials — an easy version, and a more difficult version — 
depending on condition. In the Production condition, Director trials 
were difficult but Matcher trials were easy. In the Comprehension con-
dition, it was the other way around: Matcher trials were difficult but 
Director trials were easy. In the critical Combined condition, both tasks 
were difficult. Specifically, the manipulations were as follows (also 
illustrated in Fig.  8):

• Easy Director trials: The Director was presented with both word 
options for the target object (in a random order) and simply asked 
to click on the word they wished to send.

• Difficult Director trials: The Director was presented with both 
word options for the target object (in a random order) and asked 
to use a 3 × 6 on-screen keyboard to type one of the words. 
They were only able to transmit one of the valid words; if they 
submitted a word that didn’t exist in the artificial language, or 
that referred to the other object, they were asked to try again.10 

10 We included this restriction for two reasons. Firstly, the translation proce-
dure illustrated in Fig.  7 would only work if it was possible to definitively map 
participants’ responses to categories from the input language. And secondly, 
10 
The letters required to make an HND word (‘‘z’’, ‘‘u’’, ‘‘a’’ and 
‘‘n’’) always appeared in the same positions in the centre of the 
keyboard. The letters required to make an LND word (‘‘t’’, ‘‘e’’, 
‘‘p’’, ‘‘m’’, ‘‘i’’ and ‘‘g’’), along with six other distractor letters 
that were not used in the artificial language, appeared around 
the outside of the keyboard and changed positions on every trial. 
Additionally, the central four buttons were three times as large 
(both in area and in font size) as the outer buttons. In this way, 
HND words were easier to produce than LND words. This design 
was intended to simulate the idea that, in spoken word produc-
tion, frequently-used phonemes are pronounced more quickly and 
accurately, while less frequently-used phonemes present more 
of a moving target for pronunciation (Goldrick & Larson, 2008; 
Goldrick & Rapp, 2007; Munson, 2001; Vitevitch et al., 2004).

• Easy Matcher trials: Transmission was clean, and the Matcher 
was presented with the full word sent by the Director (after any 
necessary translation; see above).

the Matcher in the Comprehension condition would always see a valid word 
since the Director had no freedom to invent new forms, so we wanted to ensure 
that this aspect was parallel across conditions.
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Fig. 7. Example of the procedure for transmitting responses in the interaction phase between two participants who were trained on a different random permutation 
of the input language. The Director sees the compass (which was the high-frequency object in their training set) and sends the word ‘‘zun’’. This is first translated 
into an underlying representation whereby objects are represented by their frequency and words by their neighbourhood, rather than either being associated with 
specific forms. This underlying representation is then used to determine which word form to show the Matcher and which object should be the target; in this 
case, the lightbulb is the target object since this was the high-frequency object in the Matcher’s training set, and its associated HND word is ‘‘zan’’.
• Difficult Matcher trials: Transmission was noisy, and the
Matcher was presented with only the first letter of the word sent 
by the Director (after any necessary translation; see above). One 
letter provided enough information to distinguish between the 
LND words, but this information loss rendered the HND words 
identical and therefore ambiguous between the two objects. This 
design was intended to simulate the idea that, in spoken word 
perception, words with many neighbours activate many candidate 
meanings, and are thus more likely to be misinterpreted, while 
more distinctive words are more likely to activate only the target 
meaning (Chan & Vitevitch, 2009; Luce & Pisoni, 1998).

Frequency report. Once participants completed the interaction phase, 
they were asked to complete one final task individually. This task was 
included as a sense check that participants had noticed the frequency 
imbalance between the two objects. Participants were presented with a 
continuous slider over percentages and asked ‘‘How often do you think 
you saw the two pictures? Did you see one more than the other?’’. The 
slider was accompanied by three labels: ‘‘Only saw Object 1’’ at one end, 
‘‘Saw both objects equally often’’ in the middle, and ‘‘Only saw Object 
2’’ at the other end. Which object appeared at which end of the slider 
was randomised for every participant.

3.1.3. Participants and exclusions
We used Prolific to recruit 220 adults resident in the UK who self-

reported that their first language was English and that they had no 
known language disorders. They were provided with a downloadable 
information sheet and gave informed consent to participate. The exper-
iment took around 20 min to complete in full (median time = 17:46), 
for which participants were paid £3.50 (above UK National Minimum 
Wage at the time of running the experiment). Seven participants were 
prevented from proceeding to the communication game due to low 
accuracy on the pre-test11; these participants were paid a reduced rate 

11 All participants passed both attention checks, so these exclusions were all 
due to low accuracy on critical trials.
11 
of £1.75. 27 participants started but failed to complete the interaction 
phase (either due to technical difficulties during the communication 
game or because they timed-out of the waiting room before being 
paired with a partner); these participants were paid a variable rate 
depending on how far they had got through the experiment. Six partici-
pants (one pair in each condition) completed the communication game 
and were paid the full rate, but their data was excluded from analysis 
because their completion time was more than 3 standard deviations 
above the median in that condition. We also pre-registered that we 
would exclude data from participants who admitted to taking written 
notes in a debrief questionnaire; no participants were excluded on this 
criterion. After all exclusions and dropouts, we were left with 30 pairs 
in each condition: a total of 180 individual participants.

3.1.4. Predictions
We predicted that participants in the Production condition, where 

HND words were easier to produce than LND words, would tend 
to use the HND word for both objects, regardless of frequency. By 
contrast, we predicted that participants in the Comprehension condition, 
where noisy transmission meant that HND words (but not LND words) 
became indistinguishable, would tend to use the LND word for both 
objects, regardless of frequency. We predicted that we would observe 
a natural-language-like frequency trade-off in the critical Combined con-
dition, where both these pressures were present, such that participants 
would consistently map the frequent object to the HND word and 
the infrequent object to the LND word. This is the optimal strategy 
by which to minimise production effort (and therefore complete the 
game as quickly as possible) but still maintain an unambiguous one-
to-one form-meaning mapping (and therefore score as many points as 
possible).

3.2. Results

3.2.1. Confirmatory analysis
Fig.  9 shows the proportion of trials on which each pair used the 

HND word on Director trials, split by object frequency and condition. 
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Fig. 8. Easy (left) and more difficult (right) versions of the Director (top) and Matcher (bottom) tasks. When the tasks are easy, HND and LND words are similarly 
easy to produce and comprehend. When the tasks are difficult, there is a production-side pressure in favour of HND words, which are made up of more accessible 
segments, and a comprehension-side pressure in favour of LND words, which are able to overcome the noise on transmission.
Fig. 9. Proportion of trials on which the HND word was used for the high-frequency object vs. the proportion of trials on which it was used for the low-frequency 
object. Each data point combines a pair of communicating players, representing the sum of their Director trial productions. As in Kanwal et al. (2017), only data 
from the second half of each pair’s interaction trials is shown, as participants were more likely to have converged on a stable mapping by this time. Data points 
in the bottom left quadrant indicate pairs who are mostly using the LND words for both objects; participants are clustered in this quadrant in the Comprehension
condition (left), where only the LND words are reliably distinguishable and there is no countervailing pressure from production in favour of the HND words. Data 
points in the top right quadrant indicate pairs who are mostly using the HND words for both objects; participants are clustered in this quadrant in the Production
condition (middle), where HND words are considerably easier to produce than LND words and there is no countervailing pressure from comprehension in favour 
of the LND words. Data points in the bottom right quadrant indicate pairs who are mostly using the HND word for the frequent object and the LND word for 
the infrequent object. This behaviour, consistent with the frequency trade-off seen in natural languages, is numerically most common in the critical Combined
condition (right), where both production and comprehension pressures are at play, but a range of other behaviours are also represented in this condition.
As predicted, most participants in the Comprehension condition used 
the LND word for both objects, while in the Production condition, 
most participants used the HND word for both objects. In the critical
Combined condition, where the HND words were considerably easier to 
produce for the Director but functionally ambiguous for the Matcher, 
participants adopted a range of strategies. Some arrived at the optimal 
strategy described in Section 3.1.4. However, many were willing to 
expend extra time and effort to use the LND words for both objects 
and thus ensure accurate communication, while others opted to use the 
HND words for both objects and thus minimise transmission time at the 
expense of perfect accuracy.

We used the lme4 package (Bates et al., 2015) in R (R. Core 
Team, 2024) to fit a logistic mixed effects model to the data, with 
a binary dependent variable of HND word use (as contrasted with 
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LND word use, i.e. 1 if the participant produced the HND word, 0 
if they produced the LND word). The model included fixed effects 
of experimental condition (treatment-coded with the Comprehension
condition as the reference level), object frequency (treatment-coded 
with low-frequency as the reference level) and their interaction, and 
nested by-participant and by-pair random intercepts and random slopes 
for object frequency.12 As in Kanwal et al. (2017), only data from the 
second half of each participant’s Director trials was included in the 
model, as pairs were more likely to have converged on a stable mapping 
by this time. The model reveals that participants in the Comprehension

12 Model formula: HND word ∼ condition + frequency + condi-
tion:frequency + (frequency | pair/participant).
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Table 1
Summary of fixed effects for a logistic mixed effects model with HND word use as the binary dependent variable, and nested 
by-participant and by-pair random effects for object frequency. The predicted effects are shown in bold. Coefficient estimates are 
on the log-odds scale.
 𝛽 SE z p  
 intercept (object = infrequent, condition = Comprehension) −8.075 1.590 −5.078 <0.001 
 object = frequent 0.807 1.707 0.473 0.636  
 condition = Production 14.024 2.526 5.553 <0.001 
 condition = Combined 3.893 1.434 2.714 <0.01  
 object = frequent & condition = Production 0.582 2.787 0.209 0.835  
 object = frequent & condition = Combined 1.689 1.458 1.158 0.247  
Fig. 10. Model predictions for each combination of condition and object frequency, generated using the ggeffects package (Lüdecke, 2018). Points represent 
the predicted probability of producing an HND word; error bars represent the 95% confidence interval around this value. Although the model predicts that 
participants in the critical Combined condition were numerically more likely to produce an HND word for the high-frequency object than the low-frequency object, 
this interaction between condition and frequency was not statistically significant (see Table  1).
condition were very unlikely to use the HND words for either object, 
while participants in the Production condition were very likely to use 
the HND words for both objects. The predicted interaction between 
condition and frequency was not statistically significant, meaning that 
there is insufficient evidence to conclude that participants in the critical
Combined condition were displaying a frequency trade-off in their use 
of HND vs. LND words. However, there was a significant main effect 
of condition, such that participants in the Combined condition were 
more likely overall to use the HND words than participants in the
Comprehension condition. A full summary of model coefficients is given 
in Table  1. The model’s predictions for each combination of condition 
and object frequency are shown in Fig.  10.

3.2.2. Exploratory analysis
Fig.  9 suggests that when only one aspect of the communicative task 

was difficult, most participants took the same approach to mitigating 
this difficulty: data points are strongly clustered in the bottom-left 
and top-right corners in the Comprehension and Production conditions 
respectively. By contrast, when both aspects of the task were difficult, 
it is less clear that participants were converging on a single optimal 
solution: data points are more widely scattered around the plot in 
the Combined condition. In particular, there are a number of points 
towards the centre of the plot (on at least one axis) in this condition, 
representing pairs who appear to be probability matching to the input 
by using the HND and LND words approximately 50% of the time each 
(for at least one object). However, this method of visualisation disguises 
some underlying differences between the two members of the pair. 
Specifically, while it is possible that a pair at the centre of this plot 
could consist of two participants probability matching to the input, it is 
equally possible that these points represent pairs where one participant 
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is only using the HND words and the other is only using the LND words. 
Indeed, if we plot individual participants instead of collapsing across 
pairs, we can see that the data tends to move away from the centre 
and towards the corners (Fig.  11).

To further explore this trend, we calculated a convergence score for 
each pair by comparing the languages produced by each member of 
the pair. Each participant’s output language can be fully described by 
a 2-dimensional vector (HF, LF ) where HF is the proportion of trials on 
which the participant used the HND word for the high-frequency object 
and LF is the proportion of trials on which they used the HND word 
for the low-frequency object. For example, the vector (1, 0) captures a 
language showing the expected frequency trade-off (i.e. in the bottom-
right corner of the plot). The divergence between two members of a pair 
is given by the Euclidean distance 𝑒 between their output languages. 
The maximum possible Euclidean distance between two 𝑛-dimensional 
vectors is equal to √𝑛 when the input values are bounded between 0 
and 1. Therefore, the convergence between two members of a pair is 
given by 

√

2 − 𝑒. Fig.  12 shows the distribution of convergence scores 
by condition. We fit a linear regression model to this data, predicting 
convergence score as a function of experimental condition (treatment-
coded with the Comprehension condition as the reference level). The 
model reveals that within-pair convergence was significantly lower in 
the Combined condition (𝛽 = −0.407, SE = 0.107, t = −3.804, p < 0.001), 
while there was no significant difference between the Comprehension and
Production conditions (𝛽 = −0.073, SE = 0.107, t = −0.682, p = 0.497).

Since pairs in the Combined condition are often failing to converge 
on a shared language, we might also expect accuracy on Matcher trials 
to be lower in this condition. Fig.  13 shows how often the Matcher 
successfully selected the target object in each condition, depending on 
the object’s frequency and the word used to label it. We fit a logistic 
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Fig. 11. By-pair (left) vs. by-participant (right) data for the Combined condition. Although it appears that a number of pairs are producing HND and LND words 
with roughly equal frequency, it is clear that individual participants are at least somewhat consistent in their choice of word. This suggests that pairs towards 
the centre of the left-hand panel have not converged on a shared language; rather, these pairs probably consist of one participant who is mostly using the HND 
words for both objects and one who is mostly using the LND words for both objects.
Fig. 12. Convergence scores by condition. The dashed line indicates the 
maximum possible score, which is achieved when both members of a pair 
produce exactly the same output language. Each coloured point represents 
an individual pair. Black points represent the mean over all pairs in that 
condition; error bars represent bootstrapped 95% confidence intervals over 
the mean. Convergence scores are similarly high in the Comprehension and
Production conditions, but significantly lower in the Combined condition.

mixed effects model to this data, predicting accuracy as a function 
of experimental condition (treatment-coded with the Comprehension
condition as the reference level), word type (treatment-coded with 
LND as the reference level), object frequency (treatment-coded with 
low-frequency as the reference level), and all two-way and three-way 
interactions between them. The model also included by-participant 
random intercepts, but failed to converge with random slopes for 
object frequency or nested random intercepts by-participant and by-
pair. There was no main effect of being in the Combined condition (𝛽 =
−0.389, SE = 1.120, t = −0.347, p = 0.728). However, the model yielded 
a significant three-way interaction between condition, frequency and 
word type, such that the probability of a correct response was higher 
in the Combined condition when the target object was high-frequency 
and labelled with the HND word (𝛽 = 4.136, SE = 1.607, t = 2.574, p
< 0.05).

This three-way interaction could indicate that participants had some 
expectations of a natural-language-like frequency trade-off in com-
prehension (even if this was not borne out in their productions). 
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Specifically, participants were relatively successful at inferring their 
partner’s intended meaning when an HND word was used to label 
the high-frequency object, even though the information provided by 
the word form alone could equally point to either object. Conversely, 
participants were very unlikely to infer that their partner was referring 
to the low-frequency object when they used an HND word. However, 
it is difficult to determine whether this discrepancy only arises in the
Combined condition because participants in this condition understand 
that there are pressures in favour of both HND and LND words and 
therefore form different expectations about how their partner might be 
behaving, or because this is the only condition where both word types 
are used frequently enough to observe a difference between them. In 
other words, it may be that accuracy for HND words only appears to be 
similar across the two object frequencies in the Comprehension condition 
because these words are hardly ever used for either object.13 If this 
is the case, then accuracy for HND words in the Combined condition 
may simply reflect a strategy of guessing meanings proportional to their 
frequency when the signal is ambiguous (i.e. guess the high-frequency 
meaning 75% of the time and the low-frequency meaning 25% of the 
time).

3.3. Experiment discussion

In our experiment, we found that language users were easily able 
to adapt their lexical choices for efficient communication when only
production was difficult or only comprehension was difficult. However, 
the picture was less clear when both of these pressures were present. 
Some participants converged on the efficient natural-language-like so-
lution: mapping easy-to-produce but potentially ambiguous words to 
frequent objects and harder-to-produce but easily distinguishable words 
to infrequent objects. However, other participants apparently priori-
tised one pressure over the other, either by using only the unambiguous 
LND words despite their cost in production, or by using only the easily 
accessible HND words despite their cost in comprehension. Nonethe-
less, as in our model, the lexicons that emerged when production and 
comprehension pressures were in competition represented an interme-
diate state between the extreme outcomes observed when only one of 
these pressures was at play, at least in terms of the overall likelihood of 
producing an HND word.

13 Accuracy in the Production condition is, unsurprisingly, at ceiling across 
the board, since the clean transmission channel in this condition ensures that 
all words are unambiguous.
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Fig. 13. Accuracy on Matcher trials by condition, object frequency and word type. Accuracy is high across the board for LND words, which are always 
unambiguous. Accuracy for HND words depends both on condition and object frequency: participants in the Combined condition are significantly more likely to 
successfully infer the intended meaning of these words when they are used to label the high-frequency object than when they are used to label the low-frequency 
object, suggesting that participants in this condition may have some expectations of a natural-language-like frequency trade-off when interpreting ambiguous 
signals.
Notably, this experiment was designed as a relatively close repli-
cation of Kanwal et al. (2017). Although the exact production and 
comprehension pressures we simulate are not identical, the net effect of 
these pressures was very similar: LND words (like long words in Kanwal 
et al.) took longer to produce, and HND words (like short words in Kan-
wal et al.) were ambiguous in communication. Despite these parallels, 
we do not replicate the frequency trade-off that arose in Kanwal et al.’s
Combined condition. In considering why our findings did not robustly 
bear out our predictions, it is worth laying out what might have led to 
this discrepancy.

Certainly, the two experiments do differ in a number of impor-
tant ways. Firstly, the input languages are quite unalike. The two 
objects in Kanwal et al.’s experiment shared a short name (‘‘zop’’) 
which was derived by clipping their unique long names (‘‘zopekil’’ and 
‘‘zopudon’’). In this way, there was a clear relationship between an 
object’s alternative names, and the ambiguity of the short name was 
a property of the lexicon that was evident throughout the experiment, 
including during training. Conversely, the two names for each object 
in our experiment were clearly unrelated, and while the HND words 
were very similar to each other, there was no outright ambiguity in the 
lexicon: the ambiguity only arose during communication as a side-effect 
of noisy transmission. It may therefore be the case that participants 
in Kanwal et al. were starting to form ideas about how they would 
deal with the ambiguity earlier in the experiment, whereas participants 
in our experiment had insufficient time to explore different strategies 
once they realised that the HND words were functionally ambiguous. 
In fact, it is possible that participants in our experiment didn’t even 
realise that the HND words were ambiguous for their partner; anecdo-
tally, a handful of participants reported on the debrief questionnaire 
that their partner was only sending one-letter responses, suggesting 
that not all participants understood that the noisy transmission was 
symmetrical and their partner had the same kind of comprehension 
difficulty as themselves. This is an inherently different situation from 
the one in Kanwal et al., where participants knew exactly how much 
information the different labels provided for their partner; future work 
should look to ensure that participants are aware of what has actually 
been transmitted to their partner on Director trials. Furthermore, it is 
likely that participants have more explicit awareness and experience 
of abbreviating frequent words (e.g. ‘‘information’’ → ‘‘info’’) than 
they do of preferentially selecting between synonyms to maximise ease 
of pronunciation, and may be bringing this experience to bear when 
considering how to solve the task.

Secondly, the manipulation of production effort in Kanwal et al. was 
perhaps more transparent than our keyboard task: the time for which 
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participants had to click and hold to send a longer word in the former 
was effectively dead time, whereas participants in our experiment were 
still engaged in the task whilst forming LND words, even if it did 
take longer. Although our manipulation clearly works in the sense that 
participants in the Production condition strongly favoured the easier-
to-form HND words, it could still be the case that it is too subtle when 
a competing pressure is present. This may also be exacerbated by the 
fact that the pressure for accuracy probably feels inherently stronger 
for participants than the pressure for speed: Prolific participants are 
highly motivated to complete tasks ‘‘correctly’’ to avoid having their 
submissions rejected. We tried another version of the experiment which 
attempted to address these first two points (reported in the Appendix), 
but the effect of frequency was not obviously stronger in this follow-
up; the most notable change in participants’ behaviour was simply an 
increased preference in favour of the HND words overall.

Finally, long words in Kanwal et al. remained consistently arduous 
throughout the experiment, since they always took a fixed number of 
seconds to transmit. On the other hand, participants in our experiment 
may have been able to improve at the keyboard task, thereby reducing 
the cost to produce LND words over time (relative to the cost for their 
partner by not producing them). However, we think this is unlikely to 
account for much of the variance between the two experiments since 
the letters required to form LND words changed position on every trial, 
so the only thing participants could really learn that would help them 
produce these words on subsequent trials is that they could ignore the 
centre of the keyboard (which should have become obvious almost 
immediately).

Leaving aside the differences between our experiment and that 
of Kanwal et al., it is also possible that we do not reproduce their results 
because we are missing some key mechanism that drives phonetic clus-
tering in the real world; in other words, it may be that processes other 
than the trade-off between production and comprehension pressures 
are at play. An obvious candidate is iconicity: in natural language 
lexicons, words that sound similar also tend to have similar meanings 
(Dautriche, Mahowald, Gibson, & Piantadosi, 2017). It is worth noting 
that iconicity could reasonably have been expected to play a role 
in Kanwal et al.’s experiment also, since there is some evidence that 
word length tends to correlate with conceptual complexity (Lewis & 
Frank, 2016). Nonetheless, future work could certainly look to control 
for iconicity between forms and meanings in the design of experimental 
stimuli; such a study could help to adjudicate between competing 
hypotheses around the origin of phonetic clustering, or indeed provide 
evidence that this phenomenon arises from multiple sources.

In summary, although we do not find evidence for a frequency 
trade-off, our experiment does provide further evidence that neither 
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production pressures nor comprehension pressures alone give rise to 
the kind of organisational structure we see in real lexicons, in line 
with Kanwal et al.’s results regarding Zipf’s Law of Abbreviation and 
with the results of our computational model when it comes to word 
similarity. Furthermore, to the extent that there are subtle tenden-
cies towards a natural-language-like frequency trade-off when both 
pressures are present, we would expect these to be amplified through 
transmission to successive generations of participants (Reali & Griffiths, 
2009; Smith & Wonnacott, 2010; Thompson et al., 2016).

4. General discussion

In this paper, we investigated how pressures operating during in-
dividual episodes of communication might give rise to an emergent 
structural property of language, whereby lexicons tend to be more 
phonetically clustered than required by their phonotactics, especially 
for high-frequency items.

In an exemplar-based computational model, we showed that cluster-
ing emerges under competition between production-side pressures for 
word similarity and comprehension-side pressures for discriminability. 
The lexicons that arise from this competition are neither as clus-
tered nor as disperse as they possibly could be, although there is 
some variance in the exact details of how the two pressures are bal-
anced depending on the strength of the comprehender-side pressure 
for distinctiveness and, to a lesser extent, frequency. With only one 
communicative pressure at work, the resulting lexicons very clearly 
fall at one extreme or the other. Specifically, when producibility is the 
only pressure, the outcome of repeated communication is a lexicon 
that is extremely easy to produce but communicatively degenerate, 
in that all words sound almost exactly the same. On the other hand, 
when comprehensibility is the only pressure, lexicons are maximally 
expressive in that all words are very distinct, but arduous from a 
production perspective due to the lack of shared sound sequences across 
words.

In a communication experiment using an artificial language, we 
showed that, when ease of production is the only pressure shaping 
participant behaviour, a strong preference emerges in favour of words 
from a high-density neighbourhood, while when ease of comprehension 
is the only pressure, the opposite preference (in favour of words from 
low-density neighbourhood) emerges. Extrapolating these preferences 
to an imagined wider lexicon, it is clear that our experiment makes the 
same predictions as our model: production pressures alone would be 
expected to give rise to a highly clustered lexicon, while comprehension 
pressures alone would lead to a highly disperse lexicon. As in the 
model, an intermediate state emerges when these pressures are in com-
petition. Specifically, one neighbourhood does not completely win out 
over the other in this scenario; rather, words from both neighbourhoods 
have their place. However, it is not clear that selection between words 
from the different neighbourhoods is modulated by frequency.

Naturally, our model and experiment differ in some respects. Per-
haps most notably, the model relies on a much larger meaning space 
(20) than the experiment (2). This discrepancy stems chiefly from 
practical considerations: computational models allow us to explore 
phenomena at a scale that would be infeasible with human participants 
in a short experiment. Similarly, while computational models are still 
simplifications of the real-world systems they are used to study, they do 
afford greater complexity than human experiments in some aspects. An 
example in our study is the way we manipulate production and com-
prehension difficulty. At a high-level, this manipulation is equivalent 
between the model and the experiment: words that are more similar 
to other words can be made easier to produce, harder to interpret, 
both, or neither. However, it is true that this is essentially a binary 
distinction in the experiment, while the model treats word similarity 
(and accordingly, its effects on production and comprehension) as a 
probabilistic gradient. This divergence is, we would contend, in line 
with the affordances of the two methodologies: while models benefit 
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from more nuanced representations, the level of control we exercise 
in experiments arguably yields more precise and easily interpretable 
results.

It is also worth noting that we do not see the discrepancies between 
the model and the experiment as problematic, because our intention 
in this study was not to design a model of  the experiment (unlike 
e.g. Brochhagen, 2021, who uses cross-validation and model compar-
ison to find a set of parameters that best fits the experimental data 
from Kanwal et al., 2017). Instead, we see our model as a ‘‘pragmatic 
cognitive tool’’ (Pesonen, 2024), and its relationship to the experiment 
as one of conceptual rather than formal similarity. The reason to adopt 
such a combination of methodologies is simply to provide converging 
evidence — in general terms — of the conditions under which arti-
ficially evolved languages come to resemble natural languages (as in 
e.g. Kirby et al., 2015). Of course, both the model and the experi-
ment are simplifications of the real world: they provide a qualitative 
understanding of the phenomenon of interest, but neither is designed 
to make detailed quantitative predictions about the evolution of any 
individual natural language (see Boyd & Richerson, 1985 for similar 
commentary on this scientific approach). Rather, the key contribution 
of both elements is one advanced by Woodward (2003)’s theory of 
causal explanation: ‘‘to see what sort of difference it would have made 
for the explanandum if the factors cited in the explanans had been 
different in various possible ways’’ (p. 11).

In any case, while the model and the experiment may not be 
directly (i.e. quantitatively) comparable, it is certainly possible to draw 
some general conclusions across the two pieces. Overall, our results 
demonstrate that mechanisms operating during individual episodes of 
communication can shape the structure of the lexicon. Crucially, we 
show that evolving lexicons balance the influence of competing pres-
sures that pull in different directions. However, with respect to the role 
of frequency, our results are less clear: frequency effects were subtle 
in our model, and do not emerge robustly in our experiment. Clearly, 
it is not possible to make precise predictions from natural language 
data about what effect sizes we would expect in such highly simplified, 
simulated lexicons. However, it is worth noting that the relationship 
between frequency and clustering in real languages is not necessarily 
a strong one; in fact, it is specifically described as a ‘‘weak tendency’’ 
by Frauenfelder et al. (1993). Correlations between frequency and dif-
ferent measures of clustering in Mahowald et al. (2018) were generally 
small, with Pearson’s 𝑟 values deemed as statistically significant starting 
at 0.08 and rarely exceeding 0.3. The relationship between frequency 
and clustering may also be stronger for word beginnings than endings 
(King & Wedel, 2020), or for content words over function words 
(Frauenfelder et al., 1993), factors not considered here. Therefore, we 
would suggest that the subtlety of the frequency effect across our model 
and experiment may be exactly as expected.

One criticism that might be levelled at our study is that the extreme 
outcomes that emerge under the influence of a single communicative 
pressure paint a highly unrealistic picture of the cognitive biases that 
shape language. As pointed out by Wasow et al. (2005), if our notion 
of ‘‘production effort’’ includes the effort required to clarify what was 
intended for a confused receiver, then effort would clearly not be 
minimised by a degenerate language (with only one word for every 
meaning). However, in the limit, a bias to re-use sound sequences 
across words points to exactly such a language, and we would argue 
that, all else being equal, producers would want their language to 
conform to this bias. It is exactly because producers have commu-
nicative goals that all else is not equal, and a compromise position 
has to emerge. Similarly, it is clearly true that, as comprehenders, we 
can happily cope with some amount of noise in the linguistic signal, 
because there are plenty of other ways to extract an interlocutor’s 
intended meaning — from contextual cues in the environment to the 
many multimodal features of language like co-speech gesture and facial 
expression. Even so, if all language users cared about was maximising 
comprehensibility, there would certainly be no harm in having lexicons 
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be as disperse as their phonotactics would allow. It is precisely because 
comprehensibility is not the only thing language users need to worry 
about that we do not see such lexicons in the real world. Whilst 
acknowledging that these counterfactual either-or situations do not rep-
resent real language use, it is still useful to examine their consequences 
in isolation; by doing so, we can verify that the phenomena we are 
trying to explain do in fact result from a trade-off between competing 
pressures, and cannot be more simply explained by one pressure or the 
other.

Natural language lexicons, as in the critical conditions of our model 
and experiment, are under pressure to adapt to several competing 
forces. The way in which they achieve an optimal balance between 
these pressures is clearly not simple, and depends on several factors. 
For example, biases can vary in strength: in our model, one source of 
variation was captured by the Receiver’s 𝛾 parameter (Section 2.1.3), 
but there are no doubt others in the real world, such as differences 
in articulatory or auditory apparatus that might make certain sound 
sequences more or less difficult to pronounce for certain individuals 
(e.g. Franken et al., 2017). In our experiment, a variety of individual 
differences may have pushed different participants to arrive at different 
solutions to the task; for example, more risk averse participants may 
have been less willing to sacrifice accuracy for the sake of speed (Carver 
& White, 1994). Nonetheless, the lexicons that emerge under competing 
pressures are, in some sense, efficient (Gibson et al., 2019; Jaeger & 
Tily, 2011): words are just distinctive ‘‘enough’’ whilst still being as 
easy to produce ‘‘as possible’’ (where ‘‘enough’’ and ‘‘as possible’’ are 
defined with reference to a specific communicative or cognitive con-
text). Optimising for producibility inevitably means introducing some 
ambiguity, but as pointed out by Piantadosi et al. (2012), ambiguity 
is actually a hallmark of an efficient communication system since it 
allows for the reuse of words and sounds that are more easily produced, 
and doesn’t impede communication as long as there are other ways 
for the comprehender to overcome the ambiguity. In our experiment, 
for example, participants could overcome the ambiguity of the HND 
words during Matcher trials either by adopting a very simple heuristic 
of probability matching their guesses to the relative frequencies of 
meanings in the world (since words are, a priori, more likely to refer to 
things we talk about more), or by establishing a shared code with their 
partner that would allow them to use probabilistic information from 
previous interactions to inform future ones.

While our study provides further evidence for the role of competing 
communicative pressures in driving language efficiency, our simulation 
of the pressures acting on language is undoubtedly a simplification in a 
number of ways. Mostly notably, our experiment simulates the pressures 
involved in language use, rather than relying on them to emerge at 
scale in the lab. Most obviously, typing is not language production 
in the usual sense, and naturalistic comprehension is not the same as 
image selection. Replicating this study in a more ecologically valid 
setting (i.e. with oral production and auditory comprehension tasks) 
is a logical next step for a few reasons. First, allowing pressures to 
emerge naturally could, in principle, provide more compelling evidence 
for a causal link between individual-level behaviour and population-
level language trends like phonetic clustering. Second, there may be 
specific aspects of production effort that are not well-simulated by 
anything other than oral production. However, it seems likely that the 
difficulty associated with these tasks would still need to be artificially 
inflated — for example, through the use of highly phonotactically 
complex words, or environmental noise on transmission — to observe, 
in a brief experiment, the kinds of effects that otherwise accumulate 
only over much larger timescales. The benefit of our design is that 
it allows us to easily manipulate task difficulty in a way that affects 
all participants roughly equally and does not depend on, for example, 
prior experience with pronouncing certain sounds, or auditory acuity. 
By doing so, we can get an idea of how small and potentially noisy 
effects at an individual-level might accumulate into large effects at a 
population-level (Kirby et al., 2007).
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The present work also does not account for every possible mecha-
nism that could play a role in shaping this aspect of lexicon structure. 
For example, it is possible that clustering emerges more strongly from 
new words entering the lexicon than from changes to or selection 
between existing words. Such a mechanism could also go some way 
to explaining the frequency effects we see in natural languages: if high-
frequency words are a stronger attractor for the form of new words than 
low-frequency words, new coinages would tend to increase connectivity 
more in high-frequency components of the lexicon (see Dautriche, 
Mahowald, Gibson, Christophe, & Piantadosi, 2017 for a similar sug-
gestion). Future work should investigate how different kinds of lexical 
evolution — from coinage to sound change and, ultimately, obsoles-
cence — might differentially drive changes in the network properties 
of the lexicon.

Our model and experiment also do not account for the role of 
learning biases in shaping linguistic systems (Christiansen & Chater, 
2008; Culbertson, 2012; Griffiths et al., 2008; Kalish et al., 2007; Kirby 
et al., 2008, 2014; Smith et al., 2003). There are several reasons to 
think that learning might play a role in driving increased clustering. 
For one, lexicons built from a smaller inventory of sound sequences 
are more compressible (Ferrer-i-Cancho et al., 2013), a property which 
reduces storage demands (Storkel & Maekawa, 2005) and allows lan-
guages to pass more easily through the bottleneck imposed by repeated 
transmission to naive individuals (Kirby et al., 2015). Moreover, in-
fants and children show clear preferences for words composed of the 
highest-frequency sound sequences in their target language (Altvater-
Mackensen & Mani, 2013; Jusczyk et al., 1994; Ngon et al., 2013) and 
generally acquire such words earlier (Coady & Aslin, 2004; Gonzalez-
Gomez et al., 2013; Storkel, 2004). Since early-acquired words are also 
known to be more stably represented within a community’s language 
(Monaghan, 2014), we might expect these developmental effects to 
show up in evolution. However, a learning-based account does not 
straightforwardly point to a clustering advantage (see e.g. Dautriche 
et al., 2015; Jones & Brandt, 2020; Storkel et al., 2006; Storkel & Lee, 
2011; Swingley & Aslin, 2007).

Furthermore, lexicons are not, contrary to the dominant view of ‘‘de-
sign features’’ (Hockett, 1960), entirely arbitrary. Rather, languages are 
rife with sound symbolism and other systematic associations between 
form and meaning (Bergen, 2004; Blasi et al., 2016; Cuskley & Kirby, 
2013; Dautriche, Mahowald, Gibson, & Piantadosi, 2017; Dingemanse 
et al., 2015; Monaghan et al., 2007, 2014; Perlman & Woodin, 2021; 
Perniss et al., 2010; Tamariz, 2008; Winter & Perlman, 2021; Winter 
et al., 2022). A detailed account of the role of semantics is missing from 
our study, since there is no level of analysis below the atomic meaning 
(e.g. we do not consider the meaning ‘‘lightbulb’’ to have any features 
that might be shared across other meanings, such as being man-made or 
having to do with electricity). Although correlations between semantic 
similarity and wordform similarity are not necessarily strong, they are 
significantly higher than would be expected by chance, and can be 
observed consistently across a diverse sample of languages (Dautriche, 
Mahowald, Gibson, & Piantadosi, 2017; Monaghan et al., 2014). It is 
therefore likely that iconicity is an important driver of phonetic cluster-
ing in natural language lexicons; future work should look to tease apart 
the relative strength of the communicative pressures we study here and 
other selective pressures acting on languages, such as those favouring 
iconic mappings between form and meaning. Another source of non-
arbitrariness is shared etymology: words that come from the same 
historical root may consequently sound similar in their modern form 
(Klein, 1971). We do not take into account any such structure in our 
models since we use randomly-generated lexicons as the input to the 
agents. However, we would argue that if the phonetic clustering that 
resulted from shared etymology was detrimental for communication, it 
could be selected out through cultural evolution; the fact that natural 
language lexicons are observably more clustered than they could be 
suggests that this is not the case. Nonetheless, future work could look 
to incorporate notions of semantic and historic relatedness as a more 
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conservative test of our hypotheses. Our model could also be adapted 
to test a variety of different starting conditions.

Finally, it is possible that our study overstates the role of functional 
pressures altogether (Caplan et al., 2020; Ceolin, 2020; Kauhanen, 
2017; Labov, 1987, 1994), or that our conceptualisation of the func-
tional pressures at work is too general. For example, production pres-
sures which favour high phonotactic probability sequences may work 
in concert with a specific comprehension-side pressure to minimise 
outright homophony, thus creating clusters of similar but non-identical 
words (Trott & Bergen, 2022). This would lead to the appearance 
of dense neighbourhoods with no direct selection for neighbourhood 
properties per se. Our results do not speak to the role of an anti-
homophony pressure, since we treat word similarity as a gradient rather 
than a binary classification: this means that homophony is seen simply 
as a high degree of similarity, not a distinct phenomenon. Future 
work could look to adjudicate between the more general principle 
we explore here — that comprehension broadly favours discriminabil-
ity — and a more specialised pressure which targets homophony in 
particular.

5. Conclusion

Corpus data shows that natural language lexicons are more phonet-
ically clustered than would be expected, even accounting for phono-
tactic rules, morphology and sound symbolism. This study provides 
the first evidence that this organisational property of the lexicon can 
arise as a result of mechanisms operating at the level of individual 
language users and individual communication episodes. Specifically, 
we show that emergent lexicon structure balances the influence of 
competing functional pressures: a pressure for distinctiveness arising 
from comprehension, and a pressure for reuse of forms arising from 
production. When only one of these pressures is present, the lexicons 
that emerge exhibit extreme levels of clustering or dispersion unlike 
those seen in natural languages. This study adds to a growing body 
of evidence showing that, through a process of cultural evolution, 
languages are optimised for efficient communication.
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Appendix. Follow-up experiment

As discussed in Section 3.3, there were a number of differences 
between the design of our experiment and the one it was modelled 
after (Kanwal et al., 2017). In particular, we felt that our manipulation 
of production effort may have been too subtle to push participants 
towards an efficient solution in the presence of a competing pres-
sure for accuracy. We also wondered whether the unclear relationship 
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between an object’s two alternative names may have changed partic-
ipants’ representation of the language in a way that could influence 
their behaviour during communication. We therefore ran a follow-
up experiment which attempted to address these two concerns, while 
maintaining the general design whereby words from the high-density 
neighbourhood were easier to produce but functionally ambiguous, 
while words from the low-density neighbourhood were harder to pro-
duce but easily distinguishable. The changes are summarised in Fig.  A.1 
and described below.

A.1. Materials

The meaning space consisted of the same two objects in the same 
frequency distribution as in the first experiment. The language con-
sisted of four artificial CVC words: ‘‘foz’’ [fAz] and ‘‘faz’’ [fæz] (the HND 
words) and ‘‘poz’’ [pAz] and ‘‘vaz’’ [væz] (the LND words). Each LND 
word in this lexicon has a corresponding HND word (with which it 
shares the final two phonemes) which is derived by a known process of 
sound change: /p/ → /f/ (e.g. Foulkes, 1997) and devoicing as in /v/ 
→ /f/ (e.g. Velde et al., 1996).

A.2. Procedure

The procedure was identical as in the first experiment, except for 
the design of the difficult Director trials. On these trials, as before, the 
Director was presented with both word options for the target object 
and asked to use an on-screen keyboard to type one of the words. 
However, the keyboard in this experiment contained only letters that 
were part of the artificial language, and all buttons were the same size 
and appeared in the same position from trial-to-trial (the configuration 
was randomised for each participant). Instead, the two keys required 
to make an LND word (‘‘p’’ and ‘‘v’’) were wonky (a random angle of 
±10, ±15 or ±20 degrees was chosen for each button on each trial), 
and had a cracked texture around the edge. At the start of each trial, 
a random integer between 1 and 3 was generated, representing the 
total number of times either of these keys would need to be pressed 
before the correct letter would appear; other times, a random letter 
that wasn’t part of the artificial language would appear. Every time 
one of these keys produced an incorrect letter, participants would need 
to press an ‘‘undo’’ button to get rid of that letter before trying again. 
Participants were told that some of the buttons were faulty and might 
need to be pressed a few times. As before, this design was intended to 
simulate the observation that less frequently-used phonemes are more 
error prone; however, we hoped that this manipulation would make the 
LND words more costly from participants’ perspective than in the first 
experiment.

A.3. Participants and exclusions

Due to financial constraints, we were only able to run the critical
Combined condition in this follow-up experiment. We used Prolific to 
recruit 72 participants who had not taken part in the first experiment. 
The experiment took around 25 min to complete in full (median time 
= 22:44) for which participants were paid £4.25. One participant was 
prevented from proceeding to the communication game due to low 
accuracy on the pre-test and paid a reduced rate of £2. 13 participants 
started but failed to complete the interaction phase and were paid a 
variable rate depending on how far they had got through the experi-
ment. Two participants (one pair) completed the communication game 
and were paid the full rate, but their data was excluded from analysis 
because their completion time was more than 3 standard deviations 
above the median. After all exclusions and dropouts, we were left with 
28 pairs: a total of 56 individual participants.
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Fig. A.1. Summary of design changes in the follow-up experiment. Input lexicons were designed such that the HND words were clearly variants of the LND 
words, rather than completely different words (left). Director trials used an on-screen keyboard in which the keys required to form an LND word were faulty — 
indicated by their cracked texture and wonky placement — and sometimes produced an incorrect letter (right).
Fig. A.2. Proportion of trials on which the HND word was used for the high-frequency object vs. the proportion of trials on which it was used for the low-
frequency object, by-pair (left) and by-participant (right). As in the first experiment, individual participants are more strongly clustered in the corners than pairs, 
suggesting that not all pairs are converging on the same language. As in the first experiment, a range of behaviours are represented, and it is not clear that a 
natural-language-like frequency trade-off (bottom right quadrant) is the most common strategy.
A.4. Results

Fig.  A.2 shows the proportion of Director trials on which the HND 
word was used for the high and low-frequency objects. As in the first 
experiment, a range of strategies are represented, and it is not clear that 
most participants are converging on the predicted frequency trade-off. 
We fit a reduced version of the model described in Section 3.2.1; since 
we only ran one condition in this follow-up experiment, there is no 
longer a fixed effect of condition, nor an interaction between condition 
and frequency. The model had by-participant random intercepts and 
random slopes for object frequency, but failed to converge with the 
nested by-pair random effects structure used in Section 3.2.1. Model 
predictions are shown in Fig.  A.3. The model reveals a significant main 
effect of frequency, such that participants were more likely to use the 
HND word to label the high-frequency object (𝛽 = 0.877, SE = 0.392, t
= 2.237, p < 0.05). This result follows straightforwardly from the fact 
that there are many more participants below than above the diagonal 
in Fig.  A.2 i.e. for participants who showed any effect of frequency, it 
was generally the predicted one. In other words, very few participants 
adopted an anti-efficient strategy of using the difficult-to-produce LND 
word for the high-frequency object and the easy-to-produce HND word 
for the low-frequency object.

However, if we consider the two experiments as a whole, it seems 
that the key difference between them is not in the strength of the 
frequency effect. We pooled the data from the Combined condition of the 
19 
Fig. A.3. Model predictions generated using the ggeffects package 
(Lüdecke, 2018). The model predicts that participants were more likely to 
produce an HND word for the high-frequency object than for the low-frequency 
object.
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Table A.1
Summary of fixed effects for a logistic mixed effects model with HND word use as the binary dependent variable and 
by-participant random effects for object frequency. The main experiment reported in Section 3 is labelled as 1a; the 
follow-up experiment is labelled as 1b. Coefficient estimates are on the log-odds scale.
 𝛽 SE z p  
 intercept (object = infrequent, experiment = 1a) −3.039 0.707 −4.300 <0.001 
 object = frequent 1.537 0.799 1.923 0.054  
 experiment = 1b 2.546 0.851 2.993 <0.01  
 object = frequent & experiment = 1b −0.452 0.944 −0.479 0.632  
Fig. A.4. Convergence scores for the Combined condition of the main experi-
ment (left) and the follow-up experiment (right). Convergence is very similar 
between the two experiments.

first experiment with the data from this follow-up experiment, and fit 
a mixed effects logistic regression model predicting HND word use as a 
function of object frequency, experiment, and their interaction. Again, 
the model had by-participant random intercepts and random slopes for 
object frequency, but failed to converge with a nested by-pair random 
effects structure. A full summary of model coefficients is given in Table 
A.1. The model reveals no overall effect of frequency, despite the sig-
nificant effect of frequency when considering the follow-up experiment 
in isolation. However, there is also no interaction between frequency 
and experiment; that is, there is no evidence that either experiment 
showed a clearer effect of frequency. Crucially, the model does show a 
significant main effect of experiment, such that the overall probability 
of producing an HND word was higher in the follow-up experiment. 
In other words, our changes to the experimental design succeeded in 
making the LND words more costly for participants to produce, but 
not in such a way that made the predicted frequency trade-off emerge 
more robustly. Convergence between the two members of a pair (i.e. 
the extent to which they settled on a shared language) also did not 
improve in the follow-up experiment (Fig.  A.4).

Overall, the results of this follow-up experiment provide further 
evidence that, insofar as there is a relationship between frequency and 
clustering, it may be more subtle than the relationship between fre-
quency and word length probed by Kanwal et al. (2017)’s experiment.

Data availability

All data and code is available at https://osf.io/vsy6z/.
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